• Title/Summary/Keyword: minimization model

Search Result 567, Processing Time 0.035 seconds

Optimal Seismic Rehabilitation of Structures Using Probabilistic Seismic Demand Model (확률적 지진요구모델을 이용한 구조물의 최적 내진보강)

  • Park, Joo-Nam;Choi, Eun-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • The seismic performance of a structure designed without consideration of seismic loading can be effectively enhanced through seismic rehabilitation. The appropriate level of rehabilitation should be determined based on the decision criteria that minimize the anticipated earthquake-related losses. To estimate the anticipated losses, seismic risk analysis should be performed considering the probabilistic characteristics of the hazard and the structural damage. This study presents the decision procedure in which the probabilistic seismic demand model is utilized for the effective estimation and minimization of the total seismic losses through seismic rehabilitation. The probability density function and the cumulative distribution function of the structural damage for a specified time period are established in a closed form, and are combined with the loss functions to derive the expected seismic loss. The procedure presented in this study could be effectively used for making decisions on the seismic rehabilitation of structural systems.

Simulation of Circulation and Water Qualities on a Partly Opened Estuarine Lake Through Sluice Gate (배수갑문을 통해 부분 개방된 하구호에서의 순환과 수질모의)

  • 서승원;김정훈;유시흥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-150
    • /
    • 2002
  • To improve the water quality of the recently constructed Siwhaho, sluice gates were operated to allow free exchange of water with the sea. This estuarine lake connected to the outer sea through narrow gates is affected mainly by flushing by gate operation and river flows and wind forcing sometimes. As a predicting tool far the water qualities, a three-dimensional finite volume model CE-QUAL-ICM is incorporated into a finite element hydrodynamic model, TIDE3D. In coupling these two different modules, a new error minimization technique is applied by considering conservation of mass. Model tests for one year after calibration and validation using field observation show that eutrophication and other biological changes reach quasi-steady state after initial 60 days of simulation, thus it would be necessary to consider moderate ramp up option to remove initial uncertainties due to cold start option. Sediment-water interaction might not be a concern in the long-term simulation, since its effect is negligible. Simulated results show the newly applied scheme can be applied with satisfaction not only fur lessening of eutrophic processes in an estuarine lake but also looking for some active circulation to improve water quality.

Development and Application of Construction Control System for Excavation (굴착 관리 정보화 시스템의 개발 및 적용)

  • 권오순;정충기;김재관;이해성;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.153-166
    • /
    • 1999
  • Since the reliability of results by the existing analyzing method is low, in the case of for excavation performed in urban area whose stability is of great importance, construction control based on field monitoring is always necessary. But the field monitoring reflects only the behavior of construction process that has already been carried out, and it has limitations in predicting the behavior of the expected construction process, which is practically more important for construction control. In this study, construction control system for excavation which can predict the behavior of the expected processes during construction with high degree of accuracy, is developed by adopting inverse analysis. The inverse analied applied field monitoring results to excavation analysis can improve the reliability of predicted results. The developed system uses an elasto-plastic soil spring model for the excavation analysis and the minimization of least squared errors between measured displacements and calculated displacements for the inverse analysis. All the required processes for construction control can be performed as an integrated work within the system reflecting real time application and user's convenience. Their applicabilitis are confirmed by two case studies.

  • PDF

Thermal displacement minimization of an oxide target for bonding process by finite element analysis and optimal design (유한요소해석과 최적설계 기법을 활용한 증착용 산화물타겟 접합공정에서의 열 변형 최소화 연구)

  • Cha, Hanyoung;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.208-213
    • /
    • 2020
  • In this research, design optimization was investigated using the finite element analysis and the optimal design technique based on the PQRSM algorithm to minimize the thermal deformation of IGZO oxide in a target module in which IGZO oxide and a copper backplate are bonded to each other. In order to apply the optimal design technique in conjunction with finite element analysis, the x-coordinate of lower supports and upper fixed boards used as design valuables, and the optimal design was performed to minimize the thermal displacement of IGZO materials as the objective function. After the optimization process, the thermal displacement within IGZO oxide could be reduced to 42 % comparing with the initial model. The result is thought to be useful in the industry as it can reduce the thermal deformation of target oxides materials only by changing the position of the subsidiary materials during the bonding process.

Optimal Design of Nonsequential Batch-Storage Network (비순차 회분식 공정-저장조 망구조 최적 설계)

  • 이경범;이의수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.407-412
    • /
    • 2003
  • An effective methodology is .reported for determining the optimal capacity (lot-size) of batch processing and storage networks which include material recycle or reprocessing streams. We assume that any given storage unit can store one material type which can be purchased from suppliers, be internally produced, internally consumed and/or sold to customers. We further assume that a storage unit is connected to all processing stages that use or produce the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. The objective for optimization is to minimize the total cost composed of raw material procurement, setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory hold-up. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems. The first yields analytical solutions for determining batch sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks. For the special case in which the number of storage is equal to the number of process stages and raw materials storage units, a complete analytical solution for average flow rates can be derived. The analytical solution for the multistage, strictly sequential batch-storage network case can also be obtained via this approach. The principal contribution of this study is thus the generalization and the extension to non-sequential networks with recycle streams. An illustrative example is presented to demonstrate the results obtainable using this approach.

OPTIMAL DESIGN OF BATCH-STORAGE NETWORK APPLICABLE TO SUPPLY CHAIN

  • Yi, Gyeong-beom;Lee, Euy-Soo;Lee, In-Beom
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1859-1864
    • /
    • 2004
  • An effective methodology is reported for the optimal design of multisite batch production/transportation and storage networks under uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, internally consumed, transported to or from other plant sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between plant sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of large-scale supply chain system.

  • PDF

Mapping Inundation Areas by Flash Flood and Developing Rainfall Standards for Evacuation in Urban Settings (GIS를 이용한 도시지역 돌발홍수 침수예상지도 작성 및 대피강우기준 개발)

  • Shin, Sang-Young;Yeo, Chang-Geon;Baek, Chang-Hyun;Kim, Yoon-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.71-80
    • /
    • 2005
  • As local flash flood exceeding planned capacity occurs frequently, localized preparedness and response to flood inundation are increasingly important. Using XP-SWMM model and GIS techniques, this study analyzes inundation areas by local flash flood and develops rainfall standards for evacuation with the case of Sadang-Cheon area, a local stream and its nearby highly populated watershed in the southern part of metropolitan Seoul, Flood inundation areas overflowed from drainage systems are analyzed and mapped by amount of rainfall that is derived from reference levels of stream flow. Rainfall standards for evacuation are comprised of 'watch' (40mm/hr) in preparing for near-future inundation and 'evacuation' (65mm/hr) in responding to realized inundation. The methods suggested by this case study may be applied to other urban areas for sound flood prevention policy measures and thus risk minimization.

  • PDF

Management of Precancerous Cervical Lesions in Iran: A Cost Minimizing Study

  • Nahvijou, Azin;Sari, Ali Akbari;Zendehdel, Kazem;Marnani, Ahmad Barati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8209-8213
    • /
    • 2014
  • Background: Cervical cancer is a common, preventable and manageable disease in women worldwide. Objectives: This study was conducted to determine the cost of follow-up for suspicious precancerous cervical lesions within a screening program using Pap smear or HPV DNA test through the decision tree. Materials and Methods: Patient follow-up processes were determined using standard guidelines and consultation with specialists to design a decision tree model. Costs of treatment in both public and private sectors were identified according to the national tariffs in 2010 and determined based on decision tree and provided services (visits to specialists, colposcopy, and conization) with two modalities: Pap smear and HPV DNA test. The number of patients and the mean cost of treatment in each sector were calculated. The prevalence of lesions and HPV were obtained from literature to estimate the cost of treatment for each woman in the population. Results: Follow-up costs were determined using seven processes for Pap smear and 11 processes for HPV DNA test. The total cost of using Pap smear and HPV DNA process for each woman in the population was 36.1$ and 174$ respectively. Conclusions: The follow-up process for patients with suspicious cervical lesions needs to be included in the existing screening program. HPV DNA test is currently more expensive than Pap smear, it is suggested that we manage precancerous cervical lesions with this latter test.

An Analysis on the Simulation Modeling for Latch-Up Minimization by High Energy Implantation of Advanced CMOS Devices (차세대 CMOS구조에서 고에너지 이온주입에 의한 래치업 최소화를 위한 모델 해석)

  • Roh, Byeong-Gyu;Cho, So-Haeng;Oh, Hwan-Sool
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.48-54
    • /
    • 1999
  • We designed the optimal device parameters of the retrograde well and the gettering layer(buried layer) using the high energy ion implantation for the next generation of CMOS struoture and proposed two models and simulated these models with Athena and Atlas, Silvaco Co. We obtained trigger currents which is more than 600 ${\mu}A/{\mu}m$ when the structure has been combined the gettering layer and the retrograde well. And the second model(twin retrograde well) was obtained that holdingcurrents were over 2500${\mu}A/{\mu}m$. As results, the more heavier dose, the more improved the latch-up immunity. The n'-p' spacing was fixed a 2${\mu}m$ in both models.

  • PDF

Acceleration Optimization of a High-speed LCD Transfer Crane Using Finite Jerk (고속 LCD 이송 시스템의 진동감소를 위한 Finite Jerk 적용 가속도 최적화)

  • Chung W.J.;Song T.J.;Jung D.W.;Cho Y.D.;Bang D.J.;Yoon Y.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1906-1909
    • /
    • 2005
  • This paper presents the acceleration optimization of a high-speed LCD (Liquid Crystal Display) transfer system for the minimization of vibration. To reduce vibration is one of key requirements for the dynamic control of a high-speed LCD transfer system. In this paper, the concept of finite jerk (the first derivative of acceleration) has been introduced for realizing input acceleration. The profile of finite jerk has been optimized using a genetic algorithm so that vibration effect can be minimized. In order to incorporate a genetic algorithm, the dynamic model of a LCD transfer system which is realized by using the $ADAMS^{(R){$ software has been linked to the simulation system constructed by the $MATLAB^{(R)}$. The simulation results illustrated that the duration of finite jerk can be optimized so as to minimize the magnitude of vibration. It has been also shown that the acceleration optimization with finite jerk can make the high-speed motion of a LCD transfer system result in low vibration, compared with the conventional motion control with trapezoidal velocity profile.

  • PDF