• Title/Summary/Keyword: mineral elements

Search Result 569, Processing Time 0.026 seconds

Components and Antimicrobial Activity of Veiled Lady Mushroom, Dictyophora echinovolvata (흰돌기망태버섯(가칭; Dictyophora echinovolvata)의 일반성분 및 항미생물활성)

  • Cheong, Jong-Chun;Cho, Soo-Muk;Jeong, Joon-Ho;Park, Jeong-Sik;Chung, Bong-Koo;Lee, Dong-Chul
    • The Korean Journal of Mycology
    • /
    • v.29 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • A strain of Dictyophora echinovolvata ASI 32002 showing good fruiting body formation was selected. Analyses of chemical and nutritional components as well as antimicrobial activity of different parts of the mushroom such as mycelium, egg, and fruiting body were carried out. There were differences in the chemical compositions and the quantities depending on developmental stages of veiled lady mushroom, D. echinovolvata ASI 32002. Nitrogen, phosphate, magnesium, and calcium in inorganic chemicals were abundant in mycelium, and potassium and mineral elements were abundant in the egg and fruiting body. Mannitol and trehalose were abundant in free sugar contents. Glutamic acid and arginine in mycelium and aspartic acid and glutamic acid in egg and fruiting body were abundant in free amino acid contents. Linoleic acid, an polyunsaturated fatty acid, was abundant in all parts of the Dictyophora species, but compositions and quantities of other fatty acids varied depending on the different parts of the mushroom. It was detected that malic acid, lactic acid and acetic acid in mycelium, formic acid, acetic acid and fumaric acid in egg, and malic acid, citric acid, lactic acid, fumaric acid in fruiting body were abundant. The methanol extracts of D. echinovolvata ASI 32002 mycelium showed antifungal activity with minimal inhibition concentration (MIC) of $62{\sim}125\;{\mu}g/ml$ that was similar levels of cyclohexamide against Aspergillus awamori, Hypocrea nigricance and Trichoderma virens. The MIC of extracts from mycelium and fruiting body against Candida albicans was $250\;{\mu}g/ml$, similar to that of tetracycline. In addition to the above results, further as food additives and ingredient of cosmetics.

  • PDF

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Geo-educational Values of the Jebudo Geosite in the Hwaseong Geopark, Korea (화성 지질공원 제부도 지질명소의 지질교육적 가치)

  • Ha, Sujin;Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Shin, Seungwon;Lim, Hyoun Soo;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2021
  • Recently, ten geosites have been considered in Hwaseong for endorsement as national geoparks, including the Jebudo, Gojeongri Dinosaur Egg Fossils, and Ueumdo geosites. The Jebudo geosite in the southern part of the Seoul metropolitan area has great potential for development as a new geoscience educational site because it has geological, geographical (landscape), and ecological significance. In this study, we described the geological characteristics through field surveys in the Jebudo geosite. We evaluated its potential as a geo-education site based on comparative analysis with other geosites in Hwaseong Geopark. In addition, we reviewed the practical effect of field education at geosites on the essential concepts and critical competence-oriented education emphasized in the current 2015 revised science curriculum. The Jebudo Geosite is geologically diverse, with various metamorphic rocks belonging to the Precambrian Seosan Group, such as quartzite, schist, and phyllite. Various geological structures, such as clastic dikes, faults, joints, foliation, and schistosity have also been recorded. Moreover, coastal geological features have been observed, including depositional landforms (gravel and sand beaches, dunes, and mudflats), sedimentary structures (ripples), erosional landforms (sea cliffs, sea caves, and sea stacks), and sea parting. The Jebudo geosite has considerable value as a new geo-education site with geological and geomorphological distinction from the Gojeongri Dinosaur Egg Fossils and Ueumdo geosites. The Jebudo geosite also has opportunities for geo-education and geo-tourism, such as mudflat experiences and infrastructures, such as coastal trails and viewing points. This geosite can help develop diverse geo-education programs that improve key competencies in the science curriculum, such as critical thinking, inquiry, and problem-solving. Furthermore, by conducting optimized geo-education focused on the characteristics of each geosite, the following can be established: (1) the expansion of learning space from school to geopark, (2) the improvement of understanding of specific content elements and linkage between essential concepts, and (3) the extension of the education scope throughout the earth system. There will be positive impacts on communication, participation, and lifelong learning skills through geopark education.

Material Characteristics and Provenance Interpretation of the Stone Moulds for Bronze Artifacts from Galdong Prehistoric Site, Korea (완주 갈동유적 출토 청동기 용범의 재질특성 및 산지해석)

  • Lee, Chan-Hee;Kim, Ji-young;Han, Su-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.387-419
    • /
    • 2005
  • Material characteristics and provenance interpretation of the raw materials for the stone moulds of bronze artifacts excavated in Galdong Prehistoric site were studied. The stone moulds are made of igneous hornblendite with coarse-grained holocrystalline textures. The surface color shows greenish grey to dark green with greasy luster. The value of magnetic susceptibility of the moulds ranges from 19.2 to 71.0 (mean ; $39.2{\times}10^{-3}$ SI unit).High value of magnetic susceptibility indicates high contents of magnetite as a ferromagnetic mineral and the wide range of the values are due to heterogeneous distribution of magnetite. These are characteristics of basic igneous rocks. The rock-forming minerals of the moulds mainly consist of amphibole, plagioclase and biotite. Pyroxene, chlorite and opaque minerals are also rarely present. A large quantity of carbon was detected on the dark black crust near the surface of the moulds by quantitative analysis. Geological field survey was carried out to identify a source of the raw materials of the stone moulds around Galdong site. Hornblendite or gabbroic rocks being similar to the moulds forming rock occur at Daeseongri, Sikcheonri and Gyodongri in Jangsoo, and Illdaeri in Namwon about 50 kilometers away from the site in a straight line. They have similarity with the moulds forming rock in magnetic susceptibility ranging from 16.1 to 72.4 (mean ; $39.9{\times}10^{-3}$ SI unit). Among those hornblendite or gabbroic rocks, one in Jangsoo area is the most similar to the moulds forming rock on the basis of petrological and mineralogical characteristics. Comparing normalized patterns of major, minor, rare earth and immobile elements contents of the moulds to them of hornblendite in Jangsoo area, geochemical evolution trend and behavior characteristics show affinities between them. It suggests that the moulds forming rock and hornblendite in Jangsoo area have been originated from cogenetic magma. This hornblendite is easy to engrave an inscription or detail graphics on the surface because of its softness, and has good thermal conductivity. Hornblendite in Sikcheonri, Jangsoo is particularly produced and used for stone wares until the present day. Therefore, it is probable that the stone materials of the moulds has been imported from Daeseongri, Sikcheonri and Gyodongri in Jangsoo area. However, it cannot be completely excluded the possibility that the material of the moulds was supplied from Illdaeri in Namwon area appearing the same type of hornblendite on a small outcrops. It is necessary to carry out further archaeological studies to identify several possibilities of migration process of raw materials.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

Manufacturing Method and Characteristics of the Dongrok(copper chloride) pigments (동록(염화동) 안료의 제조방법 및 특성에 관한 연구)

  • KANG Yeongseok;PARK Juhyun;MUN Seongwoo;HWANG Gahyun;KIM Myoungnam;LEE Sunmyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.148-169
    • /
    • 2023
  • Hayeob pigment is known as one of the traditional dark green pigments, but the color, raw material, and manufacturing method have not been clearly identified. However, comparing the analysis results of the particle shape and constituent minerals of Hayeob pigments revealed through pigment analysis studies of colored cultural properties such as Dancheong, Gwaebul, and paintings, Hayeob pigments appear to be the same as Dongrok pigments produced by salt corrosion. Therefore, in order to restore Hayeob pigment, the manufacturing method of Dongrok pigment was studied based on the records of old literature. The Dongrok pigment manufacturing method confirmed in the old literature records is a natural corrosion method in which copper powder and a caustic are mixed and then left in a humid condition to corrode. Based on this, artificial corrosion using a corrosion tester was adopted to corrode the copper powder more efficiently, and an appropriate mixing ratio was selected by analyzing the state of corrosion products according to the mixing ratio of the caustic agent. In addition, the manufacturing method of Dongrok pigment was established by adding a salt removal process to remove residual caustic agents and a purification process to increase chroma during pigment coloring. The prepared Dongrok pigments have a bluish green or green color, show an elliptical particle shape and a form in which small particles are aggregated, and a porous surface is observed. The main constituent elements are copper(Cu) and chlorine(Cl), and the main constituent mineral is identified as atacamite [Cu2Cl(OH)3]. As a result of an accelerated weathering test to evaluate the stability of the prepared Dongrok pigments, it was found that the greenness partially decreased and the yellowness significantly increased as deterioration progressed. Before deterioration, the Dongrok pigments had lower yellowness compared to the Hayeob pigments of the old Dancheong, but after deterioration, yellowness increased significantly, and it was found to have a similar chromaticity range as Dancheong's Hayeob pigments. As a result, the prepared Dongrok pigments were confirmed to be similar to Dancheong's Hayeob pigments in terms of color as well as particle shape and constituent minerals.