• Title/Summary/Keyword: min-max algorithm

Search Result 224, Processing Time 0.029 seconds

Monitoring and Prediction of Appliances Electricity Usage Using Neural Network (신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.137-146
    • /
    • 2011
  • In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.

ea­-RED++: Adding Prediction Algorithm for ea­-RED Router Buffer Management Algorithm (ea-­RED++ : 예측 알고리즘을 적용한 ea-­RED 알고리즘)

  • Lee, Jong-Hyun;Lim, Hye-Young;Hwang, Jun;Kim, Young-Chan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.298-300
    • /
    • 2003
  • ea­RED(Efficient Adaptive RED)[1][2]는 다수의 TCP 커넥션이 경쟁하는 병목구간에서 인터넷 라우터 버퍼를 능동적으로 관리하는 다양한 AQM(Active Queue Management) 알고리즘 중의 하나로 RED 라우터 버퍼 관리 알고리즘의 성능을 개선한 라우터 버퍼 관리 알고리즘이다. RED 라우터가 TD 라우터와 같은 네트워크 퍼포먼스를 유지하면서 TCP 커넥션 간 페어니스를 향상시키기 위해서는 link bandwidth. active 커넥션 수. congestion level 등에 대한 네트워크 상태를 고려하여 파라미터에 적절한 값을 설정해야만 한다. 문제는 다이내믹하게 변하는 네트워크 상황에 적합한 파라미터 값을 초기에 설정해주는 것이 매우 어렵다는 점이다. [3]. ea­RED는 max threshold와 min threshold 값을 네트워크 상황에 따라 동적으로 조절함으로써 이런 문제를 해결했고, 기존 RED에 비해 라우터 버퍼는 50% 정도만 사용하면서도, 페어니스 인덱스(Fairness Index)[4]가 최대 41.42% 개선되었다. [1] [2] 그러나 송신 TCP 커넥션의 수가 늘어날수록 성능향상에 대한 효과가 감소되었고, 드롭 패킷수가 TD나 RED 라우터 버퍼관리 알고리즘에 비해 많았기 때문에 라우터의 출력(output) 총 패킷 용량이 최대 약 2.3% 정도 TD나 RED 라우터 버퍼관리 알고리즘에 비해 적었다. 이 부분을 개선하기 위해 기존 ea­RED 알고리즘에 LR_Lines 예측 알고리즘을 적용한 ea­RED++ 알고리즘을 구현하였고, 실험 결과 페어니스 인덱스는 기존 ea­RED에 비해 최대 약 30% 정도 향상되었고, 총 output 패킷 용량의 손실률은 최대 50%정도 감소하여 기존 ea­RED에 비해 향상된 성능을 보여주었다.웍스 네트워크상의 다양한 디바이스들간의 네트워크 다양화와 분산화 기능을 얻을 수 있었고, 기존의 고가의 해외 솔루션인 Echelon사의 LonMaker 소프트웨어를 사용하지 않고도 국내의 순수 솔루션인 리눅스 기반의 LonWare 3.0 다중 바인딩 기능을 통해 저 비용으로 홈 네트워크 구성 관리 서버 시스템 개발에 대한 비용을 줄일 수 있다. 기대된다.e 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아이에서 그 주산기사망률(周産基死亡率)이 각각 가장 낮았다. 2. 사산(死産)과 초생아사망(初生兒死亡)을 구분(區分)하여 고려해 볼때 사산(死産)은 모성(母性)의 임신력(姙娠歷)과 매우 밀접한 관련이 있는 것으로 사료(思料)되었고 초생아사망(初生兒死亡)은 미숙아(未熟兒)와 이에 관련된 병

  • PDF

A Scene Boundary Detection Scheme using Audio Information in MPEG System Stream (MPEG 시스템 스트림상에서 오디오 정보를 이용한 장면 경계 검출 방법)

  • Kim, Jae-Hong;Nang, Jong-Ho;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.864-876
    • /
    • 2000
  • This paper proposes a new scene boundary detection scheme for the MPEG System stream using MPEG Audio information and proves its usefulness by extensive experiments. A scene boundary has a characteristic that the audio as well as video information are changed rapidly. This paper first classifies this scene boundary into three cases ; Radical, Gradual, Micro Changes, with respect to the audio changes. The Radical change has a large-scale changing of decibel value and pitch value at a scene boundary, the Gradual change shows the long-time transition of decibel and pitch values from max to min or vice versa, and the Micro change displays a some change of pitch or frequency distribution without decibel changes. Upon this analysis, a new scene change detection algorithm detecting these three cases is proposed in which a progressive window with a time line is used to trace the changes in the audio information. Some experiments with various movies show that proposed algorithm could produce a high detection ratio for Radical change that is the most popular scene change in the movies, while producing a moderate detection ratio for Gradual and Micro changes. The proposed scene boundary detection scheme could be used to build a database for visual information like MPEG System stream.

  • PDF

Development of an Automatic Sprayer Arm Control System for Unmanned Pest Control of Pear Trees (배나무 무인 방제를 위한 약대 자동 제어시스템 개발)

  • Hwa, Ji-Ho;Lee, Bong-Ki;Lee, Min-Young;Choi, Dong-Sung;Hong, Jun-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Purpose of this study was a development of a sprayer arm auto control system that could be operated according to distance from pear trees for automation of pest control. Auto control system included two parts, hardware and software. First, controller was made with an MCU and relay switches. Two types of ultra-sonic sensors were installed to measure distance from pear trees: one on/off type that detect up to 3 m, and the other continuous type providing 0~5 V output corresponding to distance of 0~3 m. Second, an auto control algorithm was developed to control. Each spraying arm was controlled according to the sensor-based distance from the pear trees. And it could dodge obstacles to protect itself. Max and min signal values were eliminated, when five sensor signals was collected, and then signals were averaged to reduce sensor's noises. According to results of field experiment, auto control test result was better than non auto control test result. Spraying rates were 69.25% (left line) and 98.09% (right line) under non auto control mode, because pear trees were not planted uniformly. But, auto control test's results were 92.66% (left line) and 94.64% (right line). Spraying rate was increased by maintaining distance from tree.

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

An ABR Rate Control Scheme Considering Wireless Channel Characteristics in the Wireless ATM Network (무선 ATM망에서 무선채널의 특성을 고려한 ABR 전송률 제어 방안)

  • Yi, Kyung-Joo;Min, Koo;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.206-218
    • /
    • 2000
  • Retransmissions on the DLC layer are essential to ABR service providing the low CLR (cell loss ratio) over the unreliable wireless channel with high bit error rate. In the wireless ATM, the DLC layer below ATM layer performs the retransmission and reordering of the cells to recover the cell loss over the wireless channel and by doing so, the effect of the wireless channel characteristics with high bit error rate can be minimized on the ATM layer which is designed under the assumption of the low bit error rate. We propose, in this paper, the schemes to reflect the changes of the transmission rate over the wireless channel on the ABR rate control. Proposed scheme can control the source rate to the changes of the transmission rate over the wireless channel and reduce the required buffer size in the AP (access point). In the simulation, we assume that the DLC layer can inform the ATM layer of the wireless channel quality as good or bad. Our simulation results show that the proposed schemes require the smaller buffer size compared with the existing scheme, enhanced dynamic max rate control algorithm (EDMRCA). It is also shown that the scheme with the intelligent DLC which adjusts the rate to the wireless channel quality not only provides the low CLR with smaller buffer requirement but also improves the throughput by utilizing the wireless bandwidth more efficiently.

  • PDF

Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing (병렬 연산을 이용한 방출 단층 영상의 재구성 속도향상 기초연구)

  • Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.

Evaluation of Dose Change by Using the Deformable Image Registration (DIR) on the Intensity Modulated Radiation Therapy (IMRT) with Glottis Cancer (성문암 세기조절 방사선치료에서 변형영상정합을 이용한 선량변화 평가)

  • Kim, Woo Chul;Min, Chul Kee;Lee, Suk;Choi, Sang Hyoun;Cho, Kwang Hwan;Jung, Jae Hong;Kim, Eun Seog;Yeo, Seung-Gu;Kwon, Soo-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • The purpose of this study is to evaluate the variation of the dose which is delivered to the patients with glottis cancer under IMRT (intensity modulated radiation therapy) by using the 3D registration with CBCT (cone beam CT) images and the DIR (deformable image registration) techniques. The CBCT images which were obtained at a one-week interval were reconstructed by using B-spline algorithm in DIR system, and doses were recalculated based on the newly obtained CBCT images. The dose distributions to the tumor and the critical organs were compared with reference. For the change of volume depending on weight at 3 to 5 weeks, there was increased of 1.38~2.04 kg on average. For the body surface depending on weight, there was decreased of 2.1 mm. The dose with transmitted to the carotid since three weeks was increased compared be more than 8.76% planned, and the thyroid gland was decreased to 26.4%. For the physical evaluation factors of the tumor, PITV, TCI, rDHI, mDHI, and CN were decreased to 4.32%, 5.78%, 44.54%, 12.32%, and 7.11%, respectively. Moreover, $D_{max}$, $D_{mean}$, $V_{67.50}$, and $D_{95}$ for PTV were increased or decreased to 2.99%, 1.52%, 5.78%, and 11.94%, respectively. Although there was no change of volume depending on weight, the change of body types occurred, and IMRT with the narrow composure margin sensitively responded to such a changing. For the glottis IMRT, the patient's weight changes should be observed and recorded to evaluate the actual dose distribution by using the DIR techniques, and more the adaptive treatment planning during the treatment course is needed to deliver the accurate dose to the patients.

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis (적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측)

  • Ahn, Myung Suk;Ji, Eun Yee;Song, Seung Yeob;Ahn, Joon Woo;Jeong, Won Joong;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.