• Title/Summary/Keyword: milling by-product

Search Result 91, Processing Time 0.025 seconds

Preparation of Lignocellulose Nanofiber by Mechanical Defibrillation After Pretreatment Using Cosolvent of Ionic Liquid and DMF (이온성 액체/DMF 혼합용매 전처리 후 기계적 해섬을 통한 리그노셀룰로오스 나노섬유의 제조)

  • Han, Song-Yi;Park, Chan-Woo;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • In this study, lignocellulose nanofibrils (LCNFs) were prepared from Pussy willow wood powder by disk-milling after pretreatment using the cosolvent of 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) and N,N-dimethylformamide (DMF) with different mixing ratios for different time. All pretreated samples showed native cellulose I polymorph and cellulose crystallinity was lowest when cosolvent of DMF with 30% [EMIM]Ac was used. Average crystallite size of raw material and the pretreated product by MDF and its cosolvent with 10% [EMIM]Ac was found to be about 3.2 nm and decreased with increasing pretreatment time at the DMF cosolvent with 30% [EMIM]Ac. Defibrillation efficiency was improved by loosening wood cell wall structure by the pretreatment using co-solvent system of [EMIM]Ac and DMF.

A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards (물리적 처리에 의한 폐 컴퓨터 기판으로부터 유가금속의 분리선별 특성 연구)

  • 현종영;채용배;정수복
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Printed wiring boards(PWBs) of the obsolete computers are composed of various organic and inorganic compounds as well as metals and alloys. As convinced that the valuable metals obtained from the PWBs are effectively utilized as secondary resources when recovered by economical methods, in this study, an investigation for characterizing the physical separation techniques is conducted. For the recovery of them, the sockets and chips dismantled from PWBs by scraping and residual resin boards are subjected to the appropriate separation processes according to the physical properties of each part. In the case of crushed socket scraps size ranged from -2.36 mm to +1.18 mm, approximately 97 wt% of the product obtained by magnetic separation consists of metallic compounds. In the case of chip scraps, 97% of Fe-Ni alloy and 95% of Cu metal are recovered by the combined process of air classification and dry magnetic separation in the size range from -2.36 mm to +0.15 mm. Ball milling is adopted in order to improve the removal efficiency of the thin-printed metallic materials on the residual resin boards and approximately 77% of Cu metal is recovered by zigzag separation after ball milling.

Enzymatic Milling Process for Barley Flour Preparation (보리의 효소적(酵素的) 제분(製粉) 및 이용(利用)에 관한 연구)

  • Kwon, Tai-Wan;Ahn, Byung-Yoon;Choi, Weon-Sang;Cheigh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1986
  • An enzymatic flour milling process for barley into three major fractions (barley flour, bran-crease-germ and water solubles) was studied. Carbohydrate and protein of barley endosperm could be efficiently solubilized by the digestion process of partially pearled barley with enzymes. Bran, crease and germ were removed from hydrolyzate by filtering through 30-40mesh sieves. And then filtered product was separated into fractions by sedimentation or centrifugation. The most effective digestion of the barley was obtained by the enzyme with higher activities of glucanase and protease under such conditions as barley-water ratio, 1:1.5(W/V) and temperature at $45^{\circ}C$. Total flour yield recovered was approximately 73-76% of the barley, and the portions recovered as bran-crease-germ and water solubles were about 3.6 and 15.8%, respectively.

  • PDF

Geometric Characteristics of Hole on Workpiece in Operation (구멍이 있는 공작물의 가공시 형상특성)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.43-48
    • /
    • 2001
  • In this study, the characteristics of the surface around a hole on inlet and outlet of product which are manufactured by face mill or end mill cutting with a hole or a pocket in its surface, are investigated. Furthermore, experiment for optimization of process conditions to minimize the change of characteristics of milling cut surface after a hole cutting operation, is implemented. Applying the results in this study to surface manufacturing of mold products whose surface is uneven or metal products made by diecasting, reducing the number of sequence process to obtain fine surface is expected.

  • PDF

Effects of Different Milling Methodes on Physico-chemical Properties & Products (제분방법이 쌀가루 및 제품의 특성에 미치는 영향)

  • Kum, Jun-Seok;Lee, Sang-Hyo;Lee, Hyun-Yu;Kim, Kil-Hwan;Kim, Young-In
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.546-551
    • /
    • 1993
  • Rice flour obtained by four different milling methods, Pin mill. Colloid mill, Micro mill, and Jet mill, were used to investigate physico-chemical properties and product. Crude fat, ash, and protein contents of rice flours between different milling methods were similar. Blue value, amylose content, and damaged starch which related to properties of rice flour were reduced in the order that of Jet mill, Micro mill, Colloid mill, and Pin mill. Water absorption index, water solubility index, and water retention capacity increased as damaged starch increased. Hardness of gel(15%) is the highest value for Pin mill. The finer granules (Jet mill) had lower gelatinization onset(To) and peak(Tp) than any other rice flours. Those result are simillar with amylogram properties. Enthalpy of gelatinization increased as damaged starch increased. Jet mill had the highest score (p<0.05) of overall test in sensory evaluation and good paste properties.

  • PDF

Gap Control Using Discharge Pulse Counting in Micro-EDM (미세 방전 가공에서의 방전 펄스 카운팅을 이용한 간극 제어)

  • Jung J.W.;Ko S.H.;Jeong Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.499-500
    • /
    • 2006
  • The electrode wear in micro-EDM significantly deteriorates the machining accuracy. In this regard, electrode wear needs to be compensated in-process to improve the product quality. Therefore, there are substantial amount of research about electrode wear. In this study a control method for micro-EDM using discharge pulse counting is proposed. The method is based on the assumption that the removed workpiece volume is proportional to the number of discharge pulses, which is verified from experimental results analyzing geometrically machined volume according to various number of discharges. Especially, the method has an advantage that electrode wear does not need to be concerned. The proposed method is implemented to an actual micro-EDM system using high speed data acquisition board, simple counting algorithm with 3 axis motion system. As a result, it is demonstrated that the volume of hole machined by EDM drilling can be accurately estimated using the number of discharge pulses. In EDM milling process a micro groove without depth variation caused by electrode wear could be machined using the developed control method. Consequently, it is shown that machining accuracy in drilling and milling processes can be improved by using process control based on the number of discharge pulses.

  • PDF

ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining (티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성)

  • Han, Jeong Sik;Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.

The Effects of Extrusion Cooking and Milling on the Instant Properties of Wheat Powders

  • Tanhehco, E.J.;Ng, P.K.W.
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.758-765
    • /
    • 2005
  • Instant powders that only require mixing with water prior to consumption can be produced by extrusion for use in products such as instant beverages. Both extrusion processing conditions and particle size of powder are important to end-product characteristics. In this study, a twin-screw extruder was used under various processing conditions (feed moisture, barrel temperature, and screw speed) to produce extrudates from soft wheat flour, which were ground to powders with particle size ranges of less than 93, 93-145, and $145-249\;{\mu}m$. Effects of adding soy lecithin to wheat flour before extrusion were also investigated. Water absorption, solubility, suspension viscosity, and dispersibility of wheat powders were related to specific. mechanical energy measured during extrusion. Powder particle size was important to instant properties, especially ease of dispersal in water and stability to sedimentation. Addition of lecithin significantly improved dispersibility of powders.

Particle Size and Shape Analysis : The Key to Success in Metal Powder Production

  • Pankewitz, Axel;Park, Yong-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.702-703
    • /
    • 2006
  • The particle size distribution and shape are among the important parameters for characterisation of quality of metal powders. Specific material properties such as ability to flow, reactivity as well as compressibility and its hardening potentials hence the most important characteristics of sintered metals - are determined by the size distribution and shape. The correct particle size distribution and particle shape information are the key to best product quality in atomisation processes of aluminium, milling of pure metals and other processes. This paper presents state-of-the-art technology for characterization of particle size distribution and shape.

  • PDF

Development of Automatic Cutting Tool Selection Program (절삭 공구 자동 선정 프로그램 개발)

  • 김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.177-182
    • /
    • 1998
  • The computer related techniques have been developed rapidly in the field of metal removal industry. The electronic catalog for mechanical elements is one of such developments realized in recent years. As the emergence of the electronic catalogs in the 90s, it breaks the restriction of the traditional catalog and becomes a helpful and efficient tool in the field. In this paper, we develop an electronic catalog for the cutting tools of the Korea Tungsten Co. Ltd. The catalog consists of three parts: a preprocessor for tool selection, a database for tool, and a postprocessor for search result. A preprocessor for tool selection is developed under a user-friendly consideration. A database for tool consists of milling, drilling, and reaming tools with a list of cutters, inserts, and components. A postprocessor for search result consists of weight, dimension. drawing, product order number etc. of the tools. It also suggests the optimized cutting condition of the selected tool using a neural network technique which is done by an independent research group.

  • PDF