• Title/Summary/Keyword: millimeter-band

Search Result 281, Processing Time 0.038 seconds

V-band CPW 3-dB Directional Coupler using Tandem Structure (Tandem구조를 이용한 V-band용 CPW 3-dB 방향성 결합기)

  • Moon Sung-Woon;Han Min;Baek Tae-Jong;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.41-48
    • /
    • 2005
  • We design and fabricate 3-dB tandem directional coupler using the coplanar waveguide structure which is applicable to balanced amplifiers and mixers for 60 GHz wireless local area network system. The coupler comprises the multiple-sectional parallel-coupled lines to facilitate the fabrication process, and enable smaller device size and higher directivity than those of the conventional 3-dB coupler employing the edge-coupled line. In this study, we adopt the structure of two-sectional parallel-coupled lines of which each single-coupled line has a coupling coefficient of -8.34 dB and airbridge structure to monolithically materialize the uniplanar coupler structure instead of using the conventional multilayer or bonded structure. The airbridge structure also supports to minimize the parasitic components and maintain desirable device performance in V-band (50$\~$75 GHz). The measured results from the fabricated couplers show couplings of 3.S$\~$4 dB and phase differences of 87.5$^{\circ}{\pm}1^{\circ}$ in V-band range and show directivities higher than 30 dB at a frequency of 60 GHz.

Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network (60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구)

  • 조창식;안단;이성대;백태종;진진만;최석규;김삼동;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, millimeter-wave monolithic integrated circuit(MIMIC) low noise amplifier(LNA) for V-band, which is applicable to 60 GHz wireless local area network(WLAN), was fabricated using the high performance 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate pseudomorphic high electron mobility transistor(PHEMT). The DC characteristics of PHEMT are drain saturation current density(Idss) of 450 mA/mm and maximum transconductance(gm, max) of 363.6 mS/mm. The RF characteristics were obtained the current gain cut-off frequency(fT) of 113 GHz and the maximum oscillation frequency(fmax) of 180 GHz. V-band MIMIC LNA was designed using active and passive device library, which is composed of 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT and coplanar waveguide(CPW) technology. The designed V-band MIMIC LNA was fabricated using integrated unit processes of active and passive device. The measured results of V-band MIMIC LNA are shown S21 gain of 21.3 dB, S11 of -10.6 dB at 60 GHz and S22 of -29.7 dB at 62.5 GHz. The measured result of V-band MIMIC LNA was shown noise figure (NF) of 4.23 dB at 60 GHz.

The design of Horn array antenna for 28GHz millimeter wave band (28GHz 밀리미터파대역 혼 어레이 안테나 설계)

  • Jin, Duck-Ho;Lee, Je-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 2022
  • In this paper, the relay antenna was designed in consideration of the performance of the 28GHz band 5G mobile communication relay horn antenna, such as radiation pattern and return loss. A horn array for 5G mobile communication repeater was designed by arranging the antenna elements in phase, and the performance was analyzed. Unlike conventional WCDMA (3G) and LTE (4G), in millimeter wave band communication, high path loss occurs between transmission and reception. In the design of a 5G millimeter wave horn antenna, antenna performance such as isolation and gain between antenna elements as well as gain and bandwidth of the antenna must be additionally considered. The antenna gain of the single horn antenna (1×1) and the array horn antenna (2×4) in the 28GHz band is about 10.44d Bi and 19.58dBi, respectively, and the return loss is designed to be less than -18dB. It has proven its validity and has been shown to be suitable for application to 5G mobile communication relay system.

High Performance Millimeter-Wave Image Reject Low-Noise Amplifier Using Inter-stage Tunable Resonators

  • Kim, Jihoon;Kwon, Youngwoo
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.510-513
    • /
    • 2014
  • A Q-band pHEMT image-rejection low-noise amplifier (IR-LNA) is presented using inter-stage tunable resonators. The inter-stage L-C resonators can maximize an image rejection by functioning as inter-stage matching circuits at an operating frequency ($F_{OP}$) and short circuits at an image frequency ($F_{IM}$). In addition, it also brings more wideband image rejection than conventional notch filters. Moreover, tunable varactors in L-C resonators not only compensate for the mismatch of an image frequency induced by the process variation or model error but can also change the image frequency according to a required RF frequency. The implemented pHEMT IR-LNA shows 54.3 dB maximum image rejection ratio (IRR). By changing the varactor bias, the image frequency shifts from 27 GHz to 37 GHz with over 40 dB IRR, a 19.1 dB to 17.6 dB peak gain, and 3.2 dB to 4.3 dB noise figure. To the best of the authors' knowledge, it shows the highest IRR and $F_{IM}/F_{OP}$ of the reported millimeter/quasi-millimeter wave IR-LNAs.

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

Development of Millimeter-Wave band PLL System using YIG Oscillator (YIG 발진기를 이용한 밀리미터파대역의 PLL 시스템 개발)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.;Han, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.116-119
    • /
    • 2005
  • In this paper, we propose the PLL system of the local oscillator system for the millimeter wave band's radio astronomy receiving system. The development of the proposed local oscillator system based on the YIG oscillator VCO with 26.5 ${\sim}$ 40GHz specification. This system consists of the oscillator part including the YIG VCO, the harmonic mixer, and the isolator, the RF processing part including the triplexer, limiter, and RF discrimination processor. and the PLL system including YIG modulator and controller. Based on this configuration. we verify the frequency and power stability of the developed local oscillator system according to some temperature variation. From this test results we confirm the stable output frequency and power characteristic performance of the developed La system at constant temperature.

  • PDF

Analysis of Radar Cross Section of the Tank and Its Application at Millimeter Wave W-Band (밀리미터파 W-대역에서 전차의 레이다 단면적 해석 및 응용)

  • Shin, Hokeun;Song, Sung Chan;Kim, Jihyung;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.756-759
    • /
    • 2017
  • In this paper, the radar cross section of a tank is analyzed at millimeter wave W-band. We calculate the radar cross section of the tank using the program based on PO and PTD and the computed results are compared with those of commercial simulator to check the accuracy of computations. The radar cross section is calculated in terms of the incident angle, polarization, and tank with or without cannon. The radar cross section can be reduced by changing the shape of the turret that can be applied to stealth tanks.

Silicon Based Millimeter-Wave Phased Array System (실리콘 기반의 고주파 위상 배열 시스템에 관한 연구)

  • Kang, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.130-136
    • /
    • 2014
  • This paper reviews the research on silicon based phased array system operating from microwave to millimeter wave frequencies. First, the design of phase shifter using CMOS technology is presented. The passive phase shifter is applied to the transmit/receive module from one to 16 channel in a single chip. The 35 GHz 4-element T/R module consumes less than 200 mW both transmit and receive modes. The architecture can extend to 16-channel operating at 44 GHz, thereby improving transmit power and linearity. The Ku-band 2-antenna 4-element receiver was developed using active phase shifter based on vector sum method. It is important to minimize coupling between beams because the chip contains four independent beams. The method of coupling is presented and verified.

A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

  • Chung Moon-Hee;Khaikin Vladimir B.;Kim Hyo-Ryoung;Lee Chang-Hoon;Kim Kwang-Dong;Park Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

Performance verification of Ka-Band Array Antenna using Near-Field Test Method (근접전계 시험 기법을 활용한 Ka-대역 배열안테나 성능 검증)

  • Kim, Youngwan;Kwon, Junbeom;Kang, Yeonduk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.105-111
    • /
    • 2019
  • In this paper, a performance analysis of waveguide broad-wall slot array antenna for millimeter-wave seeker in Ka-band was performed as using near-field measurement. The measurement of slot array antenna was conducted in both far-field and near-field. And the validation of near-field test in millimeter band was confirmed. It was confirmed that the beam pattern characteristics including beam width and side lobe level of the slot array antenna that performed the verification were the same. Differenced in the side lobe level of azimuth and elevation beam pattern were verified to be less than 1dB. Additionally, the new antenna aperture distribution was extracted as using back-projection method modifying the near-field data and then introduced the method conducting performance analysis of array antenna.