• Title/Summary/Keyword: mild material

Search Result 286, Processing Time 0.026 seconds

CYTOTOXIC EFFECT OF RETROGRADE FILLING MATERIALS INCLUDING GLASS IONMER CEMENT ACCORDING TO CELL LINES AND ASSAY METHODS (광중합형 glass ionomer cement를 포함한 수종 역충전재의 세포주와 검사법에 따른 독성 효과)

  • Im, Mi-Kyung;Koo, Dae-Hoi
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.403-424
    • /
    • 1996
  • Cell culture methods have been used to assess the cytotoxicity of dental materials. Different paramaters are used to monitor cytotoxic effects. But it is difficult to compare each investigator's results with different methods. The objective of this study was to investigate cytotoxic effect of several retrograde filling materials according to cell lines and assay methods. Cytotoxicity of Bestalloy (Dogmyung, Korea), Prisma APH(Densply International Inc., U.S.A.), Clearfil FII (Kuraray Co., Japan), Fuji II (GC Co., Japan), Fuji II LC (GC Co., Japan) and IRM (Densply Co., U.S.A.) on L929, 3T3 and KB permanent cell lines was measured. Radiochromium, Lactate dehydrogenase (LDH) release method and colorimetric assays, namely neutral red (NR) and MTT were used. Each material was mixed according to the manufacturer's instruction. They were tested as solid and extracted state. Cell culture media were added to each mixed or solid materials then the solution was collected and used as extract solutions. Solid Fuji II showed mild cytotoxicity on three cell lines using radiochromium release method. There was no difference in cytotoxicity of extract solution group using radiochromium release method. In colorimetric assay immediate Fuji II group and all the IRM groups showed severe cytotoxic effect. Difference in cyctotoxicity was due to rather kinds of cell lines than assay methods. Solid Fuji II and IRM showed mild cytotoxicity on three cell lines. But extract solutions had different cytotoxic effect according to cell lines using LDH release assay. Light-cured glass ionomer had mild to moderate degree of cytotoxicity on three cell lines. Cytotoxicity was affected by specimen prepaton. Susceptibility of each cell ines were also affected by assay emthods. It was suggested that cytotoxicity study using only one cell line and/or assay method might not accurately reflect the real toxic nature of dental biomaterials.

  • PDF

A Study on the Tensile Strength between Light-cured Relining Resin and Metal Denture Base (광중합형 이장재와 금속의치상 간의 결합력에 관한 연구)

  • Park, In-Chae;Lee, Joon-Kyu;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2000
  • The use of autopolymerizing-cured resin and light-cured resin for direct relining of complete and partial dentures has been popular. This investigation compared the adhesion of autopolymerizing-cured reline resin(Tokuso Rebase, Mild Rebaron) or light-cured reline resin(Mild Rebaron LC, Lighton-U) to metal base or resin base. Cylindrical samples were made from metal($Biosil^{(R)}$) or heat-cured resin(QC-20) and were prepared to produce a flat bonding surface. Cylindrical metal samples were roughened by scratch or by scratch and sandblast and were treated with primer(MR Bond) after scratch and sandblast. And then, liners were prossesed to the cylindrical metal or resin samples according to the manufacturer's recommendations so as to bond metal base or resin base. The specimens were tested in pure tension by using an Instron Univesal testing machine for the four direct reline resins. The results were as follows ; 1. In comparison with tensile bond strength of material relined on resin base or metal base, the case of resin base produced significantly higher tensile bond strength than the case of metal base. 2. Metal surface pretreatment or primer improved the tensile bond strength between the reline resin and the metal($Biosil^{(R)}$) base. 3. The tensile bond strength of Mild Rebaron LC relined on resin base or metal base were similar to those of the other reline resins.

  • PDF

A Study on the Tensile Strength between Light-cured Relining Resin and Metal Denture Base (광중합형 이장재와 금속의치상 간의 결합력에 관한 연구)

  • Park, In-Chae;Lee, Joon-Kyu;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.161-170
    • /
    • 2000
  • The use of autopolymerizing-cured resin and light-cured resin for direct relining of complete and partial dentures has been popular. This investigation compared the adhesion of autopolymerizing-cured reline resin(Tokuso Rebase, Mild Rebaron) or light-cured reline resin(Mild Rebaron LC, Lighton-U) to metal base or resin base. Cylindrical samples were made from metal($Biosil^{(R)}$) or heat-cured resin(QC-20) and were prepared to produce a flat bonding surface. Cylindrical metal samples were roughened by scratch or by scratch and sandblast and were treated with primer(MR Bond) after scratch and sandblast. And then, liners were prossesed to the cylindrical metal or resin samples according to the manufacturer's recomendations so as to bond metal base or resin base. The specimens were tested in pure tension by using an Instron Univasal testing machine for the four direct reline resins. The results were as follows ; 1. In comparison with tensile bond strength of material relined on resin base or metal base, the case of resin base produced significantly higher tensile bond strengths than the case of metal base. 2. Metal surface pretreatment or primer improved the tensile bond strength between the reline resin and the metal($Biosil^{(R)}$) base. 3. The tensile bond strengths of Mild Rebaron LC relined on resin base or metal base were similar to those of the other reline resins.

  • PDF

Effect of Thermal Grease on Thermal Conductivity for Mild Steel and Stainless Steel by ASTM D5470 (ASTM D5470 방법으로 연강과 스테인리스강의 열전도도 측정시 열그리스의 영향)

  • Cho, Young-Wook;Hahn, Byung-Dong;Lee, Ju Ho;Park, Sung Hyuk;Baeg, Ju-Hwan;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.443-450
    • /
    • 2019
  • Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance($R_{th}$) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.

Application of Biological industry using High Hydrostatic Pressure (HHP) system (초고압 시스템을 이용한 생물 산업의 적용)

  • Lee, Kwang-Jin;Choi, Sun-Do
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.362-368
    • /
    • 2008
  • High Hydrostatic Pressure assisted (HHP) process enhancement for food and allied industries are reported in this paper review. Recently, considerable research has been devoted to the improvement of mild thermal processing techniques and to the development of alternative mild processing technologies. HHP assisted can enhance existing extraction, processes and enable new commercial extraction opportunities and processes. New HHP processing approaches have been proposed, including, the potential for modification of plant cell material to provide improved bioavailability of micro nutrients while retaining the natural-like quality, simultaneous extraction. Therefore, High Hydrostatic Pressure assisted (HHP) technologies could have a strong presence in the future of the biotechnology industry.

Characteristics in Paintability of Advanced High Strength Steels

  • Park, Ha Sun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.83-89
    • /
    • 2007
  • It is expected that advanced high strength steels (AHSS) would be widely used for vehicles with better performance in automotive industries. One of distinctive features of AHSS is the high value of carbon equivalent (Ceq), which results in the different properties in formability, weldability and paintability from those of common grade of steel sheets. There is an exponential relation between Ceq and electric resistance, which seems also to have correlation with the thickness of electric deposition (ED) coat. Higher value of Ceq of AHSS lower the thickness of ED coat of AHSS. Some elements of AHSS such as silicon, if it is concentrated on the surface, affect negatively the formation of phosphates. In this case, silicon itself doesn't affect the phosphate, but its oxide does. This phenomenon is shown dramatically in the welding area. Arc welding or laser welding melts the base material. In the process of cooling of AHSS melt, the oxides of Si and Mn are easily concentrated on the surface of boundary between welded and non‐welded area because Si and Mn could be oxidized easier than Fe. More oxide on surface results in poor phosphating and ED coating. This is more distinctive in AHSS than in mild steel. General results on paintability of AHSS would be reported, being compared to those of mild steel.

Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load

  • Kondaiah, P.;Shankar, K.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • The magneto-electro-elastic (MEE) material under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroelectric and pyromagnetic effects. The pyroelectric and pyromagnetic effects on the behavior of multiphase MEE sensors bonded on top surface of a mild steel beam under thermal environment is presented in this paper. The aim of the study is to find out how samples having different volume fractions of the multiphase MEE composite behave in sensor applications. This is studied at optimal location on the beam, where the maximum electric and magnetic potentials are induced due to pyroelectric and pyromagnetic effects under clamped-free and clamped-clamped boundary conditions. The sensor which is bonded on the top surface of the beam is modeled using 8-node brick element. The MEE sensor bonded on mild steel beam is subjected to uniform temperature rise of 50K. It is assumed that beam and sensor is perfectly bonded to each other. The maximum pyroelectric and pyromagnetic effects on electric and magnetic potentials are observed when volume fraction is ${\nu}_f=0.2$. The boundary conditions significantly influence the pyroelectric and pyromagnetic effects on electric and magnetic potentials.

Some Physical Properties of Chopped Rice Straw (절단 볏짚의 물리적 성질)

  • 박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 1998
  • This study was performed to determine the kinetic friction coefficient bulk density, dynamic and static angle of repose, and terminal velocity of the chopped rice straw in the moisture range of 8~23%, which could be used for better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding the mass of rice straw on the various plate materials. Bulk density was measured with an apparatus consisting of a filling funnel and a receiving vessel. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in the cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice straw on the PVC, mild steel, stainless steel, and galvanized steel were in the range of 0.303~0.434, 0.222~0.439, 0.204~0.448, and 0.206~0.407, respectively. and indicated linear increase with moisture content. The effects of moisture change on the friction coefficients were in the order of PVC, mild steel, galvanized steel, and stainless steel. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of 56.8~60.3 kg/m$^3$, 41.4~45.9$^{\circ}$, 94.4~100.8$^{\circ}$, and 1.07~4.48 m/s, respectively, and were increased linearly with the moisture content.

  • PDF

Fatigue Strength Evaluation of Mechanical Press Joints of Cold Rolled Steel Sheet under Cross-Tension Loading (냉간압연강 판재 기계적 접합부의 십자형 인장 하중하에서의 피로강도)

  • Kim, Jong-Bong;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, for the evaluation of the static and fatigue joining strength of the joint, the geometry of the cross-tension specimen was adopted. The specimens were produced with optimal joining force and fatigue life of the clinch joint specimens was evaluated. The material selected for use in this study was cold rolled mild steel (SPCC) with a thickness of 0.8 mm. The maximum tensile load was 708 N for the specimen with single point. The fatigue endurance limit (=42.6 N) per point approached to 6% of the maximum tensile strength at a load ratio of 0.1, suggesting that the joints are vulnerable to cross-tension loading during fatigue. Compared to equivalent stress and maximum principal stress, the SWT fatigue parameter and equivalent strain can properly predict the current experimental fatigue life. The SWT parameter can be expressed as $SWT=2497.5N^{-0.552)_f$.

An Experimental Study on Block Shear Strength of Carbon Steel Fillet Welded Connection with Base Metal Fracture (탄소강 용접접합부의 모재블록전단내력에 관한 실험적 연구)

  • Lee, Hwa-Young;Hwang, Bo-kyung;Lee, Hoo-Chang;Kim, Tea-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • An experimental study on the ultimate behaviors of the mild carbon steel (SPHC) fillet-welded connection is presented in this paper. Seven specimens were fabricated by the shielded metal arc welding (SMAW). All specimens failed by typical block shear fracture in the base metal of welded connections not weld metal. Block shear fracture observed in the base metal of welded connection is a combination of single tensile fracture transverse to the loading direction and two shear fractures longitudinal to the loading direction. Test strengths were compared with strength predictions by the current design equations and suggested equations by previous researchers. It is known that current design specifications (AISC2010 and KBC2016) and Oosterhof & Driver's equation underestimated overly the ultimate strength of the welded connection by on average 44%, 31%, respectively and prediction by Topkaya's equation was the closest to the test results. Consequently, modified equation is required to be proposed considering the stress triaxiality effect and material property difference on the block shear strength for base metal fracture in welded connections fabricated with mild carbon steel.