• Title/Summary/Keyword: microstructure observation

Search Result 380, Processing Time 0.025 seconds

Microstructure and Mechanical Properties of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process (반복겹침접합압연법에 의해 강소성가공된 무산소동의 미세조직 및 기계적 특성)

  • Lee Seong-Hee;Cho Jun;Han Seung-Zun;Lim Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.240-245
    • /
    • 2005
  • An oxygen free copper was severely deformed by accumulative roll-bonding (ARB) process for improvement of its mechanical properties. Two copper sheets 1 m thick, 30 mm wide and 300 m long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about $50\%$ reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles $(\varepsilon-6.4)$. TEM observation revealed that ultrafine grains were developed after the third cycle, and their size was slightly increased at higher cycles. Tensile strength of the copper increased with the strain at low strain levels, but it hardly increased from 3 cycles $(\varepsilon>2.4)$ due to occurrence of dynamic recovery, even if the imposed strain increased.

Effect of Brazing Condition on Tensile Properties in Brazing Joints of Inconel-625/Ni-201 Using MBF-30 (MBF-30을 사용한 Inconel-625/Ni-201 브레이징 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yu, Jeong-Woo;Park, Sang-Hyun;Kim, Chang-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • This study was carried out to investigate the effect of bonding temperature and holding time on microstructure and mechanical properties in brazing joints of Ni-base superalloy using MBF-30 (Ni-4.5Si-3.2B [wt.%]). The heating rate was $20^{\circ}C$/min to the bonding temperatures $1050^{\circ}C$, $1070^{\circ}C$, $1090^{\circ}C$ under high vacuum condition. The holding times were 100s, 400s, 900s and 1600s. $Ni_3B$ phases and proeutectic Ni were observed in the interlayer of Ni-201. Then, Ni3B and Ni3Si were found in the middle region of brazing joint. Cr-boride phase appeared in the interlayer of Inconel-625. Tensile strength and elongation were decreased at $1050^{\circ}C$-1600s, $1070^{\circ}C$-900s and $1090^{\circ}C$-400s. After observation the fracture specimens, There was Ni3B which is very brittle phase in the grain boundary of Ni201.

Evaluation of FSW Weldability of Wrought and Casting Mg Alloys (전신 및 주조된 Mg합금의 FSW 접합성 평가)

  • Noh Joong-Suk;Kim Heung-Ju;Chang Woong-Seong;Bang Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.53-57
    • /
    • 2004
  • Friction stir weldability of AZ31B-H24, AZ61A-F and AZ91C-F Mg alloys were studied using microstructural observation and mechanical tests. The microstructure of stir zone(SZ) was coarse in AZ31B-H24 alloy whereas it was very fine both in AZ61A-F and AZ91C-F alloys. The hardness of SZ was remarkably increased by very fine recrystallized grains both in AZ61A-F and AZ91C-F alloys. On the other hand, the hardness of SZ was decreased in AZ31B-H24 due to the coarse microstructure. In SZ, AZ91C-F alloy showed very high hardness values because of dispersion hardening of $Mg_{17}$Al$_{12}$($\beta$ phase) and Al solid solution hardening. Because of more $Mg_{ 17}Al_{12}($\beta$ phase)$ intermetallic compounds, Mg alloy with high Al content showed poor mechanical properties.s.

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

Fluctuation of Transport Properties of Random Heterogeneous Media (비정형 혼합재 이동성질의 변동)

  • Kim, In-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.3015-3029
    • /
    • 1996
  • The notion of effective transport property of a heterogeneous medium implies that the medium is large enough that the ergodic theorem holds and local fluctuation of the property can be neglected. In case that the medium is not large enough compared to its characteristic microstructure length scale, the effective property fluctuates and differs from the value of the medium being large enough. As a representative transport phenomenon, diffusion was considered and the fluctuation of varying effective diffusion property, diffusion coarseness $C_k$, was defined as a quantifying parameter. Scaled effective diffusion property, $^*$>/k$_1$ and $C_k$ were computed for the two phase random media consisting of matrix of diffusion coefficient k$_1$ and spheres of diffusion coefficient k$_2$. Numerical simulations were performed by use of the so-called first passage time technique and data were collected for existing microstructure models of hard spheres(HS), overlapping spheres(OS) and penetrable concentric shells(PCS).

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings (갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향)

  • Lee, Jung-Min;Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Dong-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

Effect of Chemical Composition on the Microstructure and Tensile Property in TRIP-assisted Multiphase Steels (TRIP형 복합조직강의 미세조직 및 인장성질에 미치는 화학조성의 영향)

  • Lee, K.Y.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • The effect of chemical composition on the microstructural change and tensile property in TRIP-assisted steels with different chemical composition was investigated by using SEM, TEM, XRD and UTM. As a result of microscopic observation, the morphology of retained austenite could be identified as two types; a granular type in a steel containing higher Si and a film type in a steel having higher C. For the case of higher C-containing steel with a tensile strength of 860 MPa and a total elongation of 38%, film-typed retained austenite could be observed between lath bainitic ferrite. Actually, metastable retained austenite was a requisite for the good formability, which means that chemical composition plays a significant role in the microstructure and tensile property of TRIP-assisted steels. With respect to tensile property, the steels containing suitable Si and Mn, respectively, showed a typical TRIP effect in stress-strain curve, while a steel containing higher Mn content exhibited the similar behavior shown in dual phase steel.

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Mechanical Properties and Microstructure of AlN/W Composites (AlN/W계 복합재료의 기계적 특성과 미세구조)

  • 윤영훈;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF