• Title/Summary/Keyword: microstructure observation

Search Result 380, Processing Time 0.019 seconds

Joining Ability and Mechanical Properties of Friction Stir Lap Welded A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 건전성)

  • Ko, Young-Bong;Choi, Jun-Woong;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.34-40
    • /
    • 2010
  • In Friction Stir Lap Welding(FSLW), the movement of material within the weld was more important than the microstructure, due to the interface present between the sheets. Thus, The soundness of free defect, Effective Sheet Thickness(EST) and width of joint were most important factor of mechanical properties. Specimens by lap joint types that were 'A-type' and 'R-type' were made in this study. A-type tensile specimen was loaded at advancing side and R-type tensile specimen was loaded at retreating side. Macro-, micro-structural observation and mechanical properties of FSLW A5052-H112 alloy ware investigated under varying rotating and welding speed. The results were as follows: Material hook formed decreasing after sharply increasing was appeared at the end interface of joint area in advanced side, and material hook formed decreasing after smoothly increasing was observed at that in retreated side. Tensile load had no relation with defects. As rotating speed was higher, tensile strength was increasing and EST was decreasing regardless of joint types. joint efficiency was over 70%. In a result of fractography, fracture in A-type was partially occurred by dimple in SZ, and fracture in R-type was generally occurred by dimple in HAZ.

Degradation Estimation of 2.25Cr-1Mo Steel by Ultrasonic Guided Wave (유도초음파를 이용한 2.25Cr-1Mo재의 열화도 평가)

  • Park, Ik-Keun;Park, Un-Su;Lee, Sang-Young;Kwun, Sook-In;Cho, Youn-Ho;Yoon, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.415-424
    • /
    • 2001
  • The destructive method is reliable and widely used for the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials by nondestructive evaluation is strongly desired. In this paper, the use of guided wave was suggested for the evaluation on thermally damaged 2.25Cr-1Mo steel as an alternative way to compensate for limitations of fracture tests. The observation of microstructure variations of the material including carbide precipitation increase and spheroidization near grain boundary was conducted and the correlation with the guided wave features such as energy loss ration and group velocity changes was investigated. Through this study, the feasibility of ultrasonic guided wave evaluation for thermally damaged materials was explored.

  • PDF

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties (레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성)

  • Ham, Gi-Su;Kim, Chul-O;Park, Soon-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size (나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.384-388
    • /
    • 2017
  • The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.

Scanning Electron Microscopic Study of the Effects of Citric Acid on the Change of Implant Surface According to Application Time (구연산의 적용시간에 따른 임플란트 표면변화에 대한 주사전자현미경적 연구)

  • Song, Woo-Seok;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.697-709
    • /
    • 2002
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, titanium plasma-sprayed surface, and sand-blasted, large grit, acid etched surface were utilized. Implant surface was rubbed with pH 1 citric acid for $\frac{1}{2}$ min., 1 min., 1 $\frac{1}{2}$ min., 2 min., and 3min, respeaively in the test group and implant surface was not treated in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In titanium plasma-sprayed surfaces, round or amorphous particles were deposited irregularly. The irregularity of titanium plasma-sprayed surfaces conditioned with pH 1 citric acid was lessened and the cracks were increased relative to the application time of pH 1 citric acid. 3. Sand-blasted, large grit, acid etched surfaces showed the macro/micro double roughness. The application of pH 1 citric acid didn't change the characteristics of the sand-blasted, large grit, acid etched surfaces. In conclusion, the application of pH 1 citric acid to titanium plasma-sprayed surface is improper. And pure titanium machined surface implants and sand-blasted, large grit, acid etched surface implants can he treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

The Micromorphometric change of the GBA and RBM implant surface conditioned with tetracycline-HCI (염산테트라싸이클린 적용시간에 따른 GBA 및 RBM 임프란트 표면변화)

  • Park, Kang-Hun;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.705-716
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, GBA surface and RBM surface were utilized. Implant surface was rubbed with 50mg/ml tetracycline-HCl solution for ${\frac{1}{2}}$min. 1min. $1{\frac{1}{2}}$min. 2min. and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follow. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two group. 2. In GBA surfaces, control group exhibit many porous depression, and each depression were divided by strict border. Experimental group applied with tetracycline-HCl for 2min. were similar with control group. But when applied for $2{\frac{1}{2}}$min. surface alteration and border breakdown started, resulting enlargement of the porous depression. 3. In REM surface, control group exhibit rough, uneven surface with crater-like depression can be found. The surface alteration started when tetracycline-HCl was applied for 30sec. resulting breakdown of the crater-like depression. Depression became larger as applying time increased.

Micromorphometric change of implant surface conditioned with tetracycline-HCI : $FBR^{(R)}$ and CeliNest surface (표면처리 시간에 따른 임프란트 미세구조의 변화 : $FBR^{(R)}$과 CellNest 표면 임프란트)

  • Chang, Dong-Wook;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.717-729
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-BCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, double coated $FBR^{(R)}$ surface and oxidized CellNest surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-BCL solution for ${\frac{1}{2}}$, 1, $1{\frac{1}{2}}$, 2 and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. The double coated $FBR^{(R)}$ surfaces showed fine crystalline structures. The roughness of surfaces conditioned with tetracycline-BCL was lessened relative to the application time. 3. The oxidized CellNest surfaces showed the porous structures. The surface conditioning with tetracycline-BCI influenced on its micro-morphology. In conclusion, the detoxification of the affected implant surface with $50mg/m{\ell}$ tetracycline-BCL should be applied respectively with different time according to various implant surfaces.

Micromorphometric change of implant surface conditioned with Tetracycline-HCl : HA and Etched surface (염산테트라싸이클린의 적용시간에 따른 특수 가공된 임프란트 표면 변화)

  • Han, Ju-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.731-744
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, HA-coated surface and dual acid etched surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-HCL solution for ${\frac{1}{2}}$min., 1min., $1{\frac{1}{2}}$min., 2min., and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The etched surfaces showed the honey comb structures. The surface conditioning with tetracycline-HCI didn't influence on its micro-morphology. In conclusion, the detoxification with $50mg/m{\ell}$ tetracycline-HCI must be applied respectively with different time according to various implant surfaces.