• Title/Summary/Keyword: microstructure observation

Search Result 380, Processing Time 0.028 seconds

The effect of conditioning by Tetracycline-Hcl on implant surface;The SEM study and. surface roughness measurements : RBM surface (염산 테트라싸이클린이 RBM적용 임프란트 표면구조에 미치는 영향의 미세구조 및 표면 거칠기 변화에 관한 연구)

  • Lim, Hae-Soo;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.585-597
    • /
    • 2007
  • The present study was performed to evaluate the effect of Tetracycline-HCI and Saline on the change of implant surface microstructure and surface roughness according to application time. Implants with resorbable blasting media surface were utilized. Before test all 13 implants were measured surface roughness. Among them, 6 implants were rubbed with 50mg/ml Tetracycline-HCl solution and other 6 implants with saline for $\frac{1}{2}$min., 1min., $1\frac{1}{2}$min., 2min., $2\frac{1}{2}$min and 3min. Then, specimens were processed for scanning electron microscopic observation and surface roughness after test. The results of this study were as follows. 1. Control group showed a few irregular, rough, uneven surface with crater-like depression. 2. The test group with Tetracycline-HCl conditioning showed an altered surface when Tetracycline-HCl was applied for 30secs, and showed a various surface alteration as application times go on. 3. The test group with Saline conditioning showed no significant surface differences and surface roughness. 4. The significant increase of Ra value was showed when Tetracycline-HCl was applied for 30secs. In conclusion, the 50mg/ml Tetracycline-HCl must not be applied for the RBM surface implant for surface treatment.

The Effects of Citric Acid on HA coated Implant Surface (구연산 HA임플란트 표면구조에 미치는 영향)

  • Kim, Joong-Cheon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Shin, Seung-II
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.575-584
    • /
    • 2007
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, and HA coated surface were utilized. Pure titanium machined surface and HA coated surface were rubbed with pH 1 citric acid for 30s., 45s., 60s., 90s., and 120s. respectively. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. The specimens showed a few shallow grooves and ridges in pure titanium machined surface implants. The roughness of surfaces conditioned with pH 1 citric acid was slightly increased. 2. In HA-coated surfaces, round particles were deposited irregularly. The specimens were not significant differences within 45s. But, began to be changed from 60s. The roughness of surfaces was lessened and the surface dissolution was increased relative to the application time. In conclusion, pure titanium machined surface implants and HA coated surface implants can be treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites (하이브리드 섬유 보강 시멘트 복합 재료에서 구조용 합성 섬유의 인발 거동에 미치는 폴리비닐 알코올 섬유 혼입률의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2011
  • In this study, the effect of polyvinyl alcohol (PVA) fiber volume fraction on the pullout behavior of structural synthetic fiber in hybrid structural synthetic fiber and PVA fiber cement composites are presented. Pullout behavior of the hybrid fiber cement composites and structural synthetic fiber were determined by dog-bone bond tests. Test results found that the addition of PVA fiber can effectively enhance the structural synthetic fiber cement based composites pullout behavior, especially in fiber interface toughness. Pullout test results of the structural synthetic fiber showed the interface toughness between structural synthetic fiber and PVA fiber reinforced cement composites increases with the volume fraction of PVA fiber. The microstructural observation confirms the incorporation of PVA fiber can effectively enhance the interface toughness mechanism of structural synthetic fiber and PVA fiber reinforced cement composites.

The effect of microstructure of electrical discharge machinable silicon nitride on wear resistance (방전가공용 질화규소의 미세조직이 내마모에 미치는 영향)

  • 이수완;김성호;이명호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Silicon nitride is hard and tough ceramic material. Hereby, mechanical machinability is very poor. It has also high electrical resistance. Silicon nitride of extremely high electrical resistivity becomes conductive ceramic composite by adding 30 wt% TiN. Ceramics with high electrical conductivity can be electrical discharge machined. Using by the Electrical Discharge Machining (EDM) technique. $Si_3N_4-TiN$ ceramic composite with high electrical conductivity is utilized to make metal working tool. These tool materials have severe wear problem as well as oxidation. Post HIP processing after sintering $Si_3N_4-TiN$ ceramic composites was performed. The tribological property of $Si_3N_4-TiN$ composite as a function of content of TiN was investigated in air, at room temperature. The hardness, fracture toughness, and flexural strength were compared with the wear volume. SEM observation of wear tracks can make an explanation of wear mode of $Si_3N_4-TiN$ composite.

  • PDF

Redox Behaviors of NiO/YSZ Anode Tube in Anode-Supported Flat Tubular Solid Oxide Fuel Cells (평관형 고체 산화물 연료전지의 연료극 지지체 NiO/YSZ의 환원 및 재산화 거동 특성)

  • Song, Rak-Hyun;Lee, Gil-Yong;Shin, Dong-Ryul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2006
  • The redox behaviors of anode-supported flat tube for solid oxide fuel cell has been studied. The mass change of the extruded NiO/YSZ anode flat tube during redox cycling was examined by thermogravimetric analysis(TGA). The result of TGA was shown a rapidly mass change in the range of $455\;-\;670^{\circ}C$ and the reoxidation of the NiO/YSZ anode was almost completed at $750^{\circ}C$. The starting temperature of reoxidation and the maximum temperature of oxidation rate decreased with increasing the reoxidation cycle, which is attributed to the increased porosity caused by volume change. Bending strengths of the NiO/YSZ anode after redox cycling were 96 - 80 MPa and the bending strength decreased slightly with increasing the redox cycle. On the other hand, the bending strength of the NiO/YSZ anode with electrolyte showed 130 MPa after first redox cycling but decreased rapidly with increasing the redox cycle. From the results of the bending test and the microstructure observation, we conclude that the crack initiation of the electrolyte-coated NiO/YSZ anode was induced easily at interface of electrolyte/anode tube and propagated cross the electrolyte.

A Cause Analysis of Fatigue Failure of Fuel Pump Block Material(CK35) for Marine Engine (선박 엔진용 Fuel Pump Block 소재(CK35)의 피로파손 원인규명)

  • Choi Sung Jong;Kang Chang Won;Kim Tae Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.663-670
    • /
    • 2005
  • DIN CK35 (JIS S35CK) steels have been used as a material in fuel pump blocks for marine engines. Failures in the inner surface of a drilling hole, due to the initiation of fatigue cracks have been frequently reported. However, the mechanism initiating these cracks and growths has not been clearly diagnosed yet. This study was conducted using a scraped fuel pump block, containing an initiated fatigue crack in the inner surface of a drilling hole. Initially, the cracks and fractured surfaces inside the block were investigated using an optical microscope and a SEM (Scanning Electron Microscope). In addition, microstructure observation, fatigue life test and fatigue crack growth test were performed using a specimen, which was taken from the same block. Results from these tests are summarized as follows; (1) The early crack in the block was supposed to occur inside the inner surface of the drilling hole. (2) The fatigue endurance of this material was about 330 Mpa. (3) The early crack was generated in the cavitations created by the breakdown of a big inclusion, or separation between the big inclusion and the base metal, in which the fundamental ingredients of the inclusion were C, 5, and Mn. (4) In order to prevent these types of failures, the suppression of inclusions inflow by improving the casting process, formation of fine inclusions by applying a heat treatment process, and coating of the surface of the drilling hole were required.

Annealing Experiments of Albite Using Optical Microscope Heating Stage (광학현미경 가열실험대를 이용한 알바이트의 등온가열 실험 연구)

  • Park Byung-Kyu;Kim Yong-Jun;Kim Youn-Joong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.289-299
    • /
    • 2005
  • Annealing experiments on albite powders, thin sections, and TEM specimens have been performed utilizing an optical microscope heating stage. Sample orientations were determined by optical microscope and XRD, and then confirmed by TEM diffraction patterns. Partial melting of samples occurred at $1030^{\circ}C$-l2 hr for powder, but at $1060^{\circ}C$-12 hr for TEM specimen. It is difficult to get TEM images of albite microstructures above this temperature due to thickening and the amorphous phase of the melted part. Correlative studies between optical microscopy and TEM indicated that the $1050^{\circ}C$-12 hr annealing in ambient condition was most adequate to observe tweed microstructures in albite through TEM. In situ TEM heating experiments for direct observation of tweed microstructures in albite may require annealing at slightly higher temperatures than $1050^{\circ}C$ considering the high vacuum condition inside TEM.

The Effect of Substrate Temperature on Superconducting Properties of YBCO Films Prepared by Spray Pyrolysis Method using Metal Nitrate Precursors (분사열분해 CVD 법으로 증착된 YBCO 박막의 특성에 미치는 기판 온도의 영향)

  • Kim, Jae-Geun;Hong, Suk-Kwan;Yu, Seok-Koo;Cho, Han-Woo;Kim, Byung-Joo;Ahn, Ji-Hyun;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.102-106
    • /
    • 2007
  • YBCO films have been synthesized using a spray pyrolysis method. We used nitrates of Y, Ba, Cu as precursors. Deposition was made on $LaAlO_3$ (100) single crystal substrate by spraying the mist of aqueous precursor solution generated by a concentric nozzle. The distance between concentric nozzle and substrate was 15 cm. C-axis oriented films were obtained at deposition temperature of $740{\sim}800^{\circ}C$ and working pressure of 20 Torr. Oxygen partial pressure was 3 Torr and substrate was transported with the speed ranging from 0.23 cm/min to 0.7 cm/min by reel to reel. Scanning electron microscope (SEM) and X-ray diffraction (XRD) observation revealed that films are smooth and highly textured with (001) planes parallel to substrate. Highest critical current density (Jc) was $1.38\;MA/cm^2$ at 77K and self-field for the film with a thickness of $0.5\;{\mu}m$ prepared at a substrate temperature of $780^{\circ}C$ and $PO_2\;=3\;Torr$. The effect of temperature on the microstructure and YBCO phase formation will be discussed.

  • PDF

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향)

  • Kim, Ji-Won;Baek, Min-Seok;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.