• 제목/요약/키워드: microstructure homogeneity

검색결과 38건 처리시간 0.02초

Improvement in Microstructure Homogeneity of Sintered Compacts through Powder Treatments and Alloy Designs

  • Hwang, K.S.;Wu, M.W.;Yen, F.C.;Sun, C.C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.824-825
    • /
    • 2006
  • Homogeneous microstructures of the PM compacts are difficult to attain when mixed elemental powders are used. This study examined the microstructures of pressed-and-sintered and MIM products that contain Ni and Mo.Ni-rich areas, which were lean in carbon and were soft and were found easily in regular specimens. Gaps or cracks near the Ni-rich or Mo-rich areas were also frequently observed. This problem worsened when Ni and Mo particles were large and were irregular in shape. By using ball milling treatment and ferroalloy powders, the microstructure homogeneity and mechanical properties were improved. The addition of 0.5wt%Cr further improved the distribution of Ni because Cr reduced the repulsion effect between nickel and carbon. With the elimination of Ni-rich areas, more bainites and martensites were formed and mechanical properties were significantly improved.

  • PDF

W-CU 복합재료의 전도도에 미치는 미세조직의 영향 (Effect of Microstructure on Conductivity of W-Cu Composite)

  • 이영중;박광현;이병훈;김덕수;김영도
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.85-88
    • /
    • 2005
  • [ $W-15wt.\%$ ] Cu nanocomposite powders are fabricated by ball-milling and subsequent hydrogen-reduction. The compacted parts of $W-15wt.\%Cu$ nanocomposite powders were sintered at $1200^{\circ}C$ for 1 h with various heating rates of 5 and $20^{\circ}C/min$. The homogeneity of the sintered microstructures was evaluated through homogeneity index by the standard deviation of Victor's hardness test. The W-W contiguities were calculated by using Voronoi diagrams. The sintered microstructure with the heating rate of $20^{\circ}C/min$ was more homogeneous and had lower W-W contiguity than that of $5^{\circ}C/min$. The microstructural homogeneity was directly related to the W-W contiguity. Thermal conductivity of the sintered parts with the heating rate of $20^{\circ}C/min$ was higher than that with heating rate of $5^{\circ}C/min$. This phenomenon indicates that the thermal conductivity is affected by the W-W contiguity resulting from the homogeneity of the sintered microstructure.

성형미세구조가 질화알루미늄의 소결 및 물성에 미치는 영향 (Effect of Green Microstructure on the Sintering and Properties of Aluminum Nitride)

  • 이해원;전형우;송휴섭
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.209-216
    • /
    • 1995
  • In order to investigate the effect o green microstructure on the sintering behavior and properties of AlN ceramics, samples were prepared by slip casting and dry pressing. The slip cast samples had high green density, fine pore size and narrow pore size distribution. They showed much higher sinterability and more homogeneous sintered microstructure compared to the dry pressed samples. Both increased thermal conductivity and flexural strength for samples prepared by slip casting could be attributed to the improved microstructural homogeneity with isolated second phase(s).

  • PDF

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

The Effect of Cr and Mo Additions on the Improvement in Microstructural Homogeneity and Mechanical Properties of Ni-containing P/M Steels

  • Wu, Ming-Wei;Hwang, Kuen-Shyang;Huang, Hung-Shang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.931-932
    • /
    • 2006
  • The microstructures of Ni-containing P/M steels produced by admixed powders or diffusion alloyed powders are usually heterogeneous. To improve the microstructure homogeneity, the effects of Mo and Cr additions in the prealloyed powder form were examined. The results showed that the microstructural homogeneity was improved and superior mechanical properties were achieved with increases in the alloy content, particularly for the Cr. Such a beneficial effect was attained due to the reduction of the repelling effect between Ni and C, as was demonstrated through thermodynamic analysis using the Thermo-Calc software.

  • PDF

Geopolymer composite binders of soda-lime glass (GP) & Ground Granulated Blast Furnance Slag (GGBS): The strength & microstructure

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2019
  • This study investigated the possibility of strength development by incorporating the slighly coarser soda-lime glass powder (GP) with 0-100 wt.% of Ground Granulated Blast Furnace Slag (GGBS) to synthesis GGBS based geopolymer. Compressive strength, water absorption & apparent porosity, were experimentally determined. To determine the homogeneity of mix, the microstructure & elemental composition of samples were studied using SEM-EDS. Study reveals the improvement in strength and reduction in porosity for the samples containing up to 30% GP. Furthermore, the microstructure analyses confirmed the development of denser and compact structure with the incorporation of glass powder up to 30%.

  • PDF

Preliminary investigation of Ic homogeneity along the longitudinal direction of YBCO coated conductor tape under tensile loading

  • Dizon, J.R.C.;Oh, S.S.;Sim, K.D.;Shin, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.24-28
    • /
    • 2013
  • In this study, the homogeneity of critical current, $I_c$, along the lengthwise direction in the coated conductor (CC) tape under uniaxial tension was investigated using a multiple voltage tap configuration. Initially, a gradual and homogeneous $I_c$ degradation occurred in all subsections of the tape up to a certain strain value. This was followed by an abrupt $I_c$ degradation in some subsections, which caused scattering in $I_c$ values along the length with increasing tension strain. The $I_c$ degradation behaviour was also explained through n-value as well as microstructure analyses. Subsections showed $I_c$ scattering corresponding to damaged areas of the CC tape revealed that transverse cracks were distributed throughout the gauge length. This homogeneous $I_c$ degradation behaviour under tension is similar with the case under torsion strain but different with the case under hard bending which were previously reported. This behaviour is also different with the case using Bi-2223 HTS tapes under tension strain.

질화규소의 소결 및 기계적 특성에 미치는 소결첨가제 혼합방법의 영향 (Effect of Mixing Method of Sintering Additives on the Sintered and Mechanical Properties of $Si_3N_4$)

  • 김지순
    • 분석과학
    • /
    • 제6권2호
    • /
    • pp.207-215
    • /
    • 1993
  • 소결첨가제($3Al_2O_3{\cdot}5Y_2O_3$, YAG)를 질화규소에 공침방법으로 첨가하여, 통상적인 기계적 혼합 방법으로 준비된 혼합분말에 대한 혼합균일성과 소결 및 기계적 특성을 조사, 비교하였다. 준비된 혼합분말들을 SIMS를 사용하여 분말 표면과 내부의 조성을 비교분석한 결과, 공침법을 사용할 경우 소결첨가제가 $Si_3N_4$ 표면에 피복된 상태로 존재하고 있음을 나타내어 기계적 혼합에 비해 우수한 균일혼합효과를 얻을 수 있음을 확인하였다. 공침법에 의한 균일혼합효과는 $Si_3N_4$ 분말소결체의 소결밀도 및 미세구조의 개선을 수반하여 기계적 강도의 향상을 이룰 수 있음을 확인하였다.

  • PDF

Synthesis of BiSrCaCu(Ni)O Ceramics from the Gel Precursors and the Effect of Ni Substitution

  • Ahn, Beom-Shu
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1304-1323
    • /
    • 2002
  • Superconducting BiSrCaCu(Ni)O ceramicss have been prepared by the gel method using an aqueous solution containing a tartaric acid. The aqueous solution of metal salts was concentrated without precipitation. The precursor so prepared was homogeneou s and calcined at $825^{\circ}C$ for 24 h to produce superconducting phase. The thermal decomposition of gels, the formation of superconducting phase, and their ceramic microstructure were studied using IR, TGA, XRD, resistance measurements, and SEM. This method is highly reproducible and leads to powders with excellent homogeneity and small particle size for easy sinterability. The nickel dopant substituting for Cu gives rise to the gradual decrease of the Tc. Phase pure 2212 ceramics were obtained at 825 $^{\circ}C$ for 24 h. SEM pictures showed that liquid phase was formed when the samples were sintered temperatures higher than 825 $^{\circ}C$.

고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상 (Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling)

  • 김혜진;안기용;김보영;이종흔;정용재;김혜령;이종호
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.