• 제목/요약/키워드: microstructure hardness

검색결과 1,343건 처리시간 0.024초

W92-Ni-Fe 소결툴을 이용한 Cu-Ni 합금의 용접부미세조직과 경도 특성 (Investigation for Microstructure and Hardness of Welded Zone of Cu-Ni Alloy using W92-Ni-Fe Sintering Tool)

  • 윤태진;박상원;강명창;노중석;정성욱;강정윤
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.181-186
    • /
    • 2015
  • In this study, the effect of the friction stir welding (FSW) was compared with that of the gas tungsten arc welding (GTAW) on the microstructure and microhardness of Cu-Ni alloy weldment. The weldment of 10 mm thickness was fabricated by FSW and GTAW, respectively. Both weldments were compared with each other by optical microstructure, microhardness test and grain size measurement. Results of this study suggest that the microhardness decreased from the base metal (BM) to the heat affected zone (HAZ) and increased at fusion zone (FZ) of GTAW and stir zone (SZ) of FSW. the minimum Hv value of both weldment was obtained at HAZ, respectively, which represents the softening zone, whereas Hv value of FSW weldment was little higher than that of GTAW weldment. These phenomena can be explained by the grain size difference between HAZs of each weldment. Grain size was increased at the HAZ during FSW and GTAW. Because FSW is a solid-state joining process obtaining the lower heat-input generated by rotating shoulder than heat generated in the arc of GTAW.

고장력 강재의 전기저항 용접부 열처리 특성 및 기술에 대한 연구 (A Study on the Characteristics of Heat Treated ERW Weld Seam and the Technology of Seam Annealing)

    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.133-144
    • /
    • 1999
  • To fine seam annealer capacity of through thickness seam annealing in terms of through thickness microstructure change with increased toughness and elongation leaving heat trace on it, high strength steel pipes of ERW with different thickness were tested in different seam annealing temperature measured on the outer surface of pipes. Annealing temperature and microstructure of the weld seam were changed through applied seam annealing condition. Toughness and tensile test with hardness and microstructure analysis were done on the annealed weld seam to fine its characteristics as a primary step and annealing characteristics according to different seam annealing condition. Through a study of annealed ERW weld seam characteristics and seam annealing technology, amount of electric power should apply in decreased manner to arranged inductors of annealer in the order of 1st, 2nd, 3rd, so on for proper seam annealing. For example of 15.4mm thick and 610mm outside diameter pipe, applied power for proper seam annealing is 600 -650kw at 1st inductor, 450 - 500kw at 2nd inductor, 200-250 kw at 3rd inductor of annealer during 10 - 12M/minute moving speed of pipe. Also, the penetration depth of heat trace along the thickness direction of weld during seam annealing can be estimated through the equation 17mm/kv$\times$voltage(kv) with the microstructure and hardness analysis of thick weld seam as well as study of seam annealing and comparison of cooling condition to CCT diagram of low carbon high strength steel. From this result, the difference between the technological applicability of full annealing condition based on phase diagram and full penetration of heat trace based on CCT diagram along the thickness of weld seam is discussed.

  • PDF

화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구 (Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy)

  • 이민구;홍성모;김광호;김경호;김흥회
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

마찰교반공정을 통한 강재의 개질 영역에서의 미세조직에 미치는 합금원소의 영향 (Effect of Alloy Elements on Microstructure of Modified Area via Friction Stir Process in Steel Materials)

  • 김상혁;이광진;우기도
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.370-375
    • /
    • 2015
  • In this study, to confirm the effect of alloying elements on the phase transformation and conditions of the friction stir process, we processed two materials, SS400 and SM45C steels, by a friction stir process (FSP) under various conditions. We analyzed the mechanical properties and microstructure of the friction stir processed zone of SS400 and SM45C steels processed under 400RPM - 100mm/min conditions. We detected no macro (tunnel defect) or micro (void, micro crack) defects in the specimens. The grain refinement in the specimens occurred by dynamic recrystallization and stirring. The microstructure at the friction stir processed zone of the SS400 specimen consisted of an ${\alpha}$-phase. On the other hand, the microstructure at the friction stir processed zone of the SM45 specimen consisted of an ${\alpha}$-phase, $Fe_3C$ and martensite due to a high cooling rate and high carbon content. Furthermore, the hardness and impact absorption energy of the friction stir processed zone were higher than those of base metals. The hardness and impact absorption energy of FSPed SM45C were higher than that of FSPed SS400. Our results confirmed the effect of alloying elements on the phase transformation and mechanical properties of the friction stir processed zone.

CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향 (Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders)

  • 조경식;송인범;김재;오명훈;홍재근;박노광
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

AZ61-xPd (x = 0, 1 and 2 wt%) Mg합금의 미세조직 및 인장특성에 미치는 열처리의 영향 (Effect of Aging Treatment on the Microstructure and Tensile Properties of AZ61-xPd (x = 0, 1 and 2 wt%) Alloys)

  • 김상현;김병호;박경철;박용호;박익민
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.711-720
    • /
    • 2012
  • In this study, the effect of aging treatment on the microstructure and tensile properties of AZ61-xPd (x = 0, 1 and 2 wt%) alloys were investigated. The microstructure of as-cast AZ61-xPd alloys mainly consisted of ${\alpha}-Mg$, $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. After solution treatment, most of the $Mg_{17}Al_{12}$ phases were dissolved into the Mg matrix. Thereafter, $Mg_{17}Al_{12}$ phases were finely formed and distributed near thermally stable $Al_4Pd$ phases and inside the grains through aging treatment at $220^{\circ}C$ during 88 hours. With the aging at $220^{\circ}C$, the peak aged AZ61-xPd alloys showed higher hardness than as-cast and solution treated AZ61-xPd alloys. In particular, the AZ61-1Pd alloy was optimized due to refined $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. Further, the peak aging time was reduced with increasing Pd addition (>1 wt%). Tensile strength was increased by Pd addition at $25^{\circ}C$, $150^{\circ}C$, both as-cast and peak aged AZ61-xPd alloys. After aging treatment, room and high temperature tensile strength were increased more than the as-cast specimens. The AZ61-1Pd alloy especially showed the largest strength increase range. Elongation was decreased with addition Pd at $25^{\circ}C$ and $150^{\circ}C$.

3D 프린팅으로 제작된 AlCrFeNi 고엔트로피 합금의 분말 입도에 따른 특성 분석 (A Study on Powder Size Dependence of Additive Manufactured AlCrFeNi HEA on Its Microstructure and Mechanical Properties)

  • 최종우;박혜진;강결찬;정민섭;오기태;홍성환;김현길;김기범
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.22-27
    • /
    • 2022
  • Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.

Effects of Alloying Element and Heat Treatment on Properties of Cu-Ti Alloys

  • Suk, Han-Gil;Hong, Hyun-Seon
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.246-249
    • /
    • 2009
  • Cu-Ti alloys with titanium in the range of 0.5-6.0 wt% were developed to evaluate the effect of the titanium content and heat treatment on microstructure, hardness, and electrical conductivity. The hardness of the Ti-added copper alloys generally increased with the increase in titanium content and hardening was effective up to the 2.5 wt%-Ti addition. Microstructural examination showed that the second phase of $Cu_4Ti$ started to precipitate out from the 3.0 wt% Ti-addition, and the precipitate size and volume fraction increased with further Ti addition. Aging of the present Cu-Ti alloys at $450^{\circ}C$ for 1 h increased the hardness; however, the further aging up to 10 h did not much change the hardness. In the present study, it was inferred that in optimal Ti addition and aging condition Cu-Ti alloy could have the hardness and electrical conductivity values which are comparable to those of commercial Cu-Be alloy.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • 제5권4호
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

텅스텐 특성에 대한 소결온도의 영향 (Effect on Mechanical Properties of Tungsten by Sintering Temperature)

  • 박광모;이상필;배동수;이진경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.