DOI QR코드

DOI QR Code

Investigation for Microstructure and Hardness of Welded Zone of Cu-Ni Alloy using W92-Ni-Fe Sintering Tool

W92-Ni-Fe 소결툴을 이용한 Cu-Ni 합금의 용접부미세조직과 경도 특성

  • Yoon, Tae-Jin (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Park, Sang-Won (Pusan National Univ., Graduate School of Convergence Science) ;
  • Kang, Myung-Chang (Pusan National Univ., Graduate School of Convergence Science) ;
  • Noh, Joong-Suk (R&D Center, Taekwang Tech Co., LTD.) ;
  • Chung, Sung-Wook (Welding Engineering R&D group, Daewoo Shipbuilding and Marine Engineering Co., Ltd.) ;
  • Kang, Chung-Yun (National Core Research Center for Hybrid Materials Solution, Pusan National University)
  • 윤태진 (부산대학교 하이브리드소재솔루션 국가핵심연구센터(NCRC)) ;
  • 박상원 (부산대학교 융합학부) ;
  • 강명창 (부산대학교 융합학부) ;
  • 노중석 (태광테크 기술연구소) ;
  • 정성욱 (대우조선해양 산업기술연구소 용접기술연구그룹) ;
  • 강정윤 (부산대학교 하이브리드소재솔루션 국가핵심연구센터(NCRC))
  • Received : 2015.06.01
  • Accepted : 2015.06.19
  • Published : 2015.06.28

Abstract

In this study, the effect of the friction stir welding (FSW) was compared with that of the gas tungsten arc welding (GTAW) on the microstructure and microhardness of Cu-Ni alloy weldment. The weldment of 10 mm thickness was fabricated by FSW and GTAW, respectively. Both weldments were compared with each other by optical microstructure, microhardness test and grain size measurement. Results of this study suggest that the microhardness decreased from the base metal (BM) to the heat affected zone (HAZ) and increased at fusion zone (FZ) of GTAW and stir zone (SZ) of FSW. the minimum Hv value of both weldment was obtained at HAZ, respectively, which represents the softening zone, whereas Hv value of FSW weldment was little higher than that of GTAW weldment. These phenomena can be explained by the grain size difference between HAZs of each weldment. Grain size was increased at the HAZ during FSW and GTAW. Because FSW is a solid-state joining process obtaining the lower heat-input generated by rotating shoulder than heat generated in the arc of GTAW.

Keywords

References

  1. C. S. Dimbylow and R. J. C. Dawson, 46 (1978) 461.
  2. M. S. Wiener and B. V. Salas: Corro. Eng. Sci. Tech., 40 (2005) 137. https://doi.org/10.1179/174327805X46931
  3. H.-G. Seo and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 34 (Korean). https://doi.org/10.4150/KPMI.2014.21.1.34
  4. S. H. Gutierrez: Weld J., (1991) 76.
  5. M. G. Collins, J. C. Lippold and J. M. Kikel: Proc. of 6th International Trends in Welding Research Conference ASM International, (2003) 586.
  6. S. A. Gavin, J. Billingham, J. P. Chubb and P. Hancock: Metals Tech., 5 (1978) 397. https://doi.org/10.1179/mt.1978.5.1.397
  7. R. S. Mishra and Z. Y. Ma: Mater. Sci. Eng. R., 50 (2005) 1. https://doi.org/10.1016/j.mser.2005.07.001
  8. T.-J. Yoon, M.-C. Kang and C.-Y. Kang: J. Korean Powder Metall. Inst., 20 (2013) 302 (Korean). https://doi.org/10.4150/KPMI.2013.20.4.302
  9. R. T. Lee, C. T. Liu, Y. C. Chiou and H. L. Chen: J. Mater. Proccess Tech., 213 (2013) 69. https://doi.org/10.1016/j.jmatprotec.2012.07.014
  10. T.-J. Yoon and C.-Y. Kang: Mater. Lett., 142 (2015) 253. https://doi.org/10.1016/j.matlet.2014.12.033
  11. T.-J. Yoon, S.-J. Kim, S.-W. Song, J.-K. Hong and C.-Y. Kang: J. of KWJS, 29 (2011) 99 (Korean).
  12. E.O. Hall: Proc. Phys Soc. B, 64 (1951) 747. https://doi.org/10.1088/0370-1301/64/9/303
  13. N. J. Petch: J. Iron. Steel Inst., 174 (1953) 25.
  14. Tomotake Hirata, Taizo Oguri, Hideki Hagino, Tsutomu Tanaka, Sung Wook Chung, Yorinobu Takigawa and Kenji Higashi: Mater. Sci. Eng. A, 456 (2007) 344. https://doi.org/10.1016/j.msea.2006.12.079