DOI QR코드

DOI QR Code

Effect of Alloy Elements on Microstructure of Modified Area via Friction Stir Process in Steel Materials

마찰교반공정을 통한 강재의 개질 영역에서의 미세조직에 미치는 합금원소의 영향

  • Kim, Sang Hyuk (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Lee, Kwang Jin (Convergence Components & Agricultural Machinery Group, Korea Institute of Industrial Technology) ;
  • Woo, Kee Do (Division of Advanced Materials Engineering, Chonbuk National University)
  • 김상혁 (전북대학교 신소재공학부) ;
  • 이광진 (한국생산기술연구원 융복합부품.농기계그룹) ;
  • 우기도 (전북대학교 신소재공학부)
  • Received : 2015.06.10
  • Accepted : 2015.07.15
  • Published : 2015.08.27

Abstract

In this study, to confirm the effect of alloying elements on the phase transformation and conditions of the friction stir process, we processed two materials, SS400 and SM45C steels, by a friction stir process (FSP) under various conditions. We analyzed the mechanical properties and microstructure of the friction stir processed zone of SS400 and SM45C steels processed under 400RPM - 100mm/min conditions. We detected no macro (tunnel defect) or micro (void, micro crack) defects in the specimens. The grain refinement in the specimens occurred by dynamic recrystallization and stirring. The microstructure at the friction stir processed zone of the SS400 specimen consisted of an ${\alpha}$-phase. On the other hand, the microstructure at the friction stir processed zone of the SM45 specimen consisted of an ${\alpha}$-phase, $Fe_3C$ and martensite due to a high cooling rate and high carbon content. Furthermore, the hardness and impact absorption energy of the friction stir processed zone were higher than those of base metals. The hardness and impact absorption energy of FSPed SM45C were higher than that of FSPed SS400. Our results confirmed the effect of alloying elements on the phase transformation and mechanical properties of the friction stir processed zone.

Keywords

References

  1. R. Gorockiewicz, A. Adamek and M. Korecki, ASM handbook 4A, 389, J. Dossett and G. E. Totten edit., ASM international, USA (2013).
  2. Y. Wei, Z. Zurecki and R. D. Sisson Jr., Surf. Coat. Technol., 272, 190 (2015). https://doi.org/10.1016/j.surfcoat.2015.04.006
  3. S. A. A. Azis, I. J. and N. W. Ahamad, Surf. Coat. Technol., 210, 142 (2012). https://doi.org/10.1016/j.surfcoat.2012.09.005
  4. I. Jauhari, S. Rozali, N. Rozlin Nik Masdek and O. Hiroyuki, Mater. Sci. Eng. A, 466, 230 (2007). https://doi.org/10.1016/j.msea.2007.02.082
  5. D. Z. Wang, Q. W. Hu and X. Y. Zeng, Surf. Coat. Technol., 274, 51 (2015). https://doi.org/10.1016/j.surfcoat.2015.04.035
  6. T. Arai, J. K. Shin, H. Matsubayashi, S. Ochiai, H. Okuda, K. Osamura and W. Prusseit, Physica C, 469 (15-20), 1472 (2009). https://doi.org/10.1016/j.physc.2009.05.068
  7. Y. Niu, D. Lu, L. Huang, J. Zhao, X. Zheng and G. Chen, Vacuum, 117, 98 (2015). https://doi.org/10.1016/j.vacuum.2015.04.015
  8. I. A. Bataev, M. G. Golkovskii, A. A. Losinskaya, A. A. Bataev, A. I. Popelyukh, T. Hasselc and D. D. Golovin, Appl. Surf. Sci., 322, 6 (2014). https://doi.org/10.1016/j.apsusc.2014.09.137
  9. S. Adachi and N. Ueda, Adv. Powder Technol., 24(5), 818 (2013). https://doi.org/10.1016/j.apt.2012.12.011
  10. A. Toumpis, A. Galloway, S. Cater and N. McPherson, Mater. Des., 62, 64 (2014). https://doi.org/10.1016/j.matdes.2014.04.066
  11. M. Esmailzadeh, M. Shamanian, A. Kermanpur and T. Saeid, Mater. Sci. Eng. A, 561, 486 (2013). https://doi.org/10.1016/j.msea.2012.10.068
  12. A. Toumpis, A. Galloway, L. Molter and H. Polezhayeva, Mater. Des., 80, 116 (2015). https://doi.org/10.1016/j.matdes.2015.04.046
  13. R. Srinivasu, A. Sambasiva Rao, G. Madhusudhan Reddy and K. Srinivasa Rao, Defence Technol., 11(2), 140 (2015). https://doi.org/10.1016/j.dt.2014.09.004
  14. D. Li, X. Yang, L. Cui, F. He and X. Zhang, J. Mater. Process. Technol., 222, 391 (2015). https://doi.org/10.1016/j.jmatprotec.2015.03.036
  15. M. Besel, Y. Besel, U. A. Mercado, T. Kakiuchi and Y. Uematsu, Int. J. Fatigue, 77, 1 (2015). https://doi.org/10.1016/j.ijfatigue.2015.02.013
  16. K. J. Lee, S. H. Kim, H. K. Park and I. H. Oh, Adv. Mater. Res., 399-401, 273 (2012).

Cited by

  1. Immobilization of Cr (VI) in stainless steel slag and Cd, As, and Pb in wastewater using blast furnace slag via a hydrothermal treatment vol.23, pp.3, 2017, https://doi.org/10.1007/s12540-017-6576-1