• Title/Summary/Keyword: microstrip structure

Search Result 556, Processing Time 0.034 seconds

A Design of UHF Sensor using Partial Discharge Measurement in GIS (부분방전 측정용 UHF센서의 설계)

  • Park, K.S.;Kim, J.B.;Song, Y.P.;Kim, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.28-30
    • /
    • 2002
  • The PD in GIS leads to a charge transfer and a voltage drop across the discharge area. They cannot be measure directly but we can measure electromagnetic wave made by PD. In generally, compared with VHF band, electromagnetic waves of UHF band have a low noise therefore, we can detect the real defect with several pC in GIS using UHF method. In this paper, the U-slot microstrip patch antenna for measuring PD signal in GIS is presented. the proposed UHF sensor are designed to have large band characteristics and unaffected structure for GIS operation.

  • PDF

High-gain polarization conversion metasurface

  • Chen, Aixin;Ning, Xiangwei;Liu, Xin;Zhang, Zhe
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • A novel analytical method based on the cavity mode theory to design a metasurface (MS) is proposed in this study. We carefully analyzed the phase and amplitude characteristics of the incident wave and transmitted wave, and successfully designed a circular polarization conversion MS by introducing a cutting structure with wider operation bandwidth and higher radiation direction gain compared with that of the original MS. For the measurements, a microstrip antenna operating at 2.4 GHz was used as the source antenna to verify the designed MS. The simulation and measurement results agree well with each other.

RF Receiver design for Satellite Digital Audio Reception (Antenna)

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.71-78
    • /
    • 2019
  • This paper describes a design for a RF receiver to receive satellite digital audio service. The RF receiver designed in this study is a planar structure that is easy to install on the rooftop of a car and is compact in size. In addition, it can be applied to certain commercial models because it has low noise and high gain characteristics. The impedance bandwidth of antenna is 17.8%(415MHz), and the axial ratio is below 3dB as good properties for the bandwidth of 40MHz which is a satellite digital audio service band. Also, it had a broad radiation beamwidth of $95.41^{\circ}$ in H-plane and $117.45^{\circ}$ in E-plane. From the results of the field test of satellite digital audio service reception for the RF receiver, it demonstrated good C/N rate(10.2dB).

Omnidirectional Collinear Antenna Using for Multi-Layer PCB Structure (다층 PCB 구조를 이용한 전방향성 코리니어 안테나)

  • Jung, Huyk;Suh, Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1133-1136
    • /
    • 2011
  • In this paper, we proposed a collinear antenna with a stripline structure for IEEE 802.11b/g applications in ISM (Industrial, Scientific, Medical) band of 2.4~2.5 GHz, which supplements disadvantages of COCO(Coaxial Collinear) antenna and OMA(Omnidirectional planar Microstrip Antenna). By using the proposed 4-layer substrate, we obtained improved performances and advantages in production compared with the existing antenna. In order to get antenna arrays, the same phase structure is designed by alternatively connecting outer conductor to inner conductor with ${\lambda}$/2 antenna element, and the substrate of FR4 epoxy (${\epsilon}_r$=4.4, tan${\delta}$=0.02) was used for the actual implementation. The maximum gain of about 4.93 dBi was measured, which leaded to a little improved gain of 0.33 dBi in comparison to the existing OMA structure.

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • Kim D. H;Hwang W;Park H. C;Park W. S
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.22-27
    • /
    • 2004
  • The objective of this work is to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that is asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials are selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSSFIP elements inserted into structural layers were designed fur satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16{\;}{\tiems}{\;}8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75 (1.875kN) load level, Experimental results were compared with single load level fatigue life prediction equations (SFLPE) and in good agreement with SFLPE. SAS concept is the first serious attempt at integration fur both antenna and composite engineers and promises innovative future communication technology.

A Technique for Reducing the Size of Butler Matrix using Multi-layer Substrates (다층기판을 이용한 버틀러 매트릭스 소형화 방법)

  • Choi, Young-Soo;Yu, Sang-Tai;Park, Sun-Ju;Dorjsuren, Baatarkhuu;Lim, Jong-Sik;Ahn, Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.18-23
    • /
    • 2010
  • 4$\times$4 Butler Matrix structure has been presented in this paper. It can passes the signal with equal power level and phase difference in the 824MHz to 894MHz frequency of the cellular band. Conventional Butler Matrix was implemented as a single layer substrate structure, but in this paper, we use multi-layer substrate structure and eventually we could get it reduced in size than others. We also used the LTCC coupler to reduce the size effectively, instead of using $90^{\circ}$ hybrid coupler composed of microstrip structure. we used Designer V3.5 Ansoft HFSS V11 for design of 4$\times$4 Butler matrix. Finally, we get good agreements between simulation and experimental results.

  • PDF

Broadband Hybrid Antenna with Directional Radiation Pattern Utilizing Epsilon Negative Zeroth-Order Resonance (ENG 영차 공진을 이용하여 대역폭이 개선되고 지향성 방사 패턴을 갖는 하이브리드 안테나)

  • Kim, In-Ho;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.886-892
    • /
    • 2010
  • In this paper, the hybrid antenna utilizing epsilon negative zeroth-order resonance(ENG ZOR) and $TM_{010}$-mode is presented. The antenna has a directional radiation pattern and improved bandwidth. To obtain a ENG ZOR and $TM_{010}$-mode, the hybrid antenna employs the mushroom structure and the microstrip patch, respectively. Two antennas of the mushroom and the patch are coupled by gap and fed by one coaxial feed. The frequencies of ENG ZOR and of $TM_{010}$ resonance are designed to be 4 GHz and 3.9 GHz, respectively. Because two resonant frequencies are set to be close, the dual-resonance can be formed, resulting in the broader bandwidth. Even though the radiation pattern of an ENG ZOR antenna is omnidirectional, the directional radiation of a microstrip patch antenna compensates the null of omnidirectional pattern of an ENG ZOR antenna. Thus, the hybrid antenna has a directional radiation pattern. The antennas having 4, 3, and 2 unit cells of mushroom structure are designed and analyzed. The antennas have fractional bandwidths of 4.29~4.95 %, gains of 3.16~5.57 dBi, and radiation efficiencies of 62.4~94.2 %.

Monopole Antenna with a Triangular Patch Structure for Penta-Band Service (5중 대역 서비스를 위한 삼각 패치 결합 구조의 모노폴 안테나)

  • Park, Jin-Won;Cho, rae-June;Moon, Byong-In;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • In this paper, the microstrip antenna for penta-band service is proposed. It is designed for a wide band characteristic based on a monopole line combined with a triangular patch structure which has two slits. Total antenna size is $35\;mm{\times}20\;mm$ and it was fabricated on FR-4 substrate($\varepsilon_r=4.4$) which has $35\;mm{\times}75\;mm{\times}1\;mm$ size and a microstrip line with impedance 50 ohm is used. Experimental result shows the impedance bandwidth($VSWR{\leq}3$) of the proposed antenna operated within GSM/DCS/USPCS/UMTS/Bluetooth frequency band. The resonance frequency of the proposed antenna is 0.92, 1.97, 2.45 GHz and the average gain is -2.18, -0.66, -0.58 dBi. Also, the radiation efficiency is 60, 85, 87%. The fabricated antenna is satisfied with the aimed impedance bandwidth ($VSWR{\leq}3$) in GSM/DCS/ USPCS/UMTS/Bluetooth frequency band.

A RF Microstrip Balun Using a Wilkinson Divider and 3-dB Quadrature Couplers (월킨슨 분배기와 90도 위상차 분배기를 이용한 RF 마이크로스트립 발룬)

  • Park Ung-Hee;Lim Jong-Sik;Kim Joung-Myoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.246-252
    • /
    • 2005
  • A RF microstrip balun having low transmission loss for the balanced receiving dipole antenna is designed and fabricated using a three-section Wilkinson divider and two 3-dB quadrature couplers. It considers two types of the three-section Wilkinson dividers, the Cohn's optimum three-section structure and the miniaturized three-section structure, for wideband power splitting. Also, two 3-dB quadrature couplers for 180 degrees of phase difference adopt a twist-wire coaxial cable. The fabricated first balun having the Cohn's optimum three-section Wilkinson divider has 0.5 dB of transmission loss, $\pm$0.2 dB of amplitude imbalance, and 180$\pm$2.3 degrees of phase imbalance over 400 to 1000 MHz by measurement. The second one using the miniaturized three-section Wilkinson divider shows 1.0 dB of transmission loss, $\pm$0.7 dB of amplitude imbalance, and 180$\pm$8.8 degrees of phase imbalance over the same frequency band.