Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0245

High-gain polarization conversion metasurface  

Chen, Aixin (School of Electronic and Information Engineering, Beihang University)
Ning, Xiangwei (School of Electronic and Information Engineering, Beihang University)
Liu, Xin (School of Electronic and Information Engineering, Beihang University)
Zhang, Zhe (School of Electronic and Information Engineering, Beihang University)
Publication Information
ETRI Journal / v.41, no.2, 2019 , pp. 160-166 More about this Journal
Abstract
A novel analytical method based on the cavity mode theory to design a metasurface (MS) is proposed in this study. We carefully analyzed the phase and amplitude characteristics of the incident wave and transmitted wave, and successfully designed a circular polarization conversion MS by introducing a cutting structure with wider operation bandwidth and higher radiation direction gain compared with that of the original MS. For the measurements, a microstrip antenna operating at 2.4 GHz was used as the source antenna to verify the designed MS. The simulation and measurement results agree well with each other.
Keywords
amplitude adjustment; metasurface; phase adjustment; polarization conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Zhang et al., Adaptive decoupling using tunable metamaterials, IEEE Trans. Microw. Theory Techn. 64 (2016), 2730-2739.   DOI
2 G. Minatti et al., Synthesis of modulated‐metasurface antennas with amplitude, phase, and polarization control, IEEE Trans. Antennas Propag. 64 (2016), 3907-3919.   DOI
3 S. Wangand D. Gao, Power transfer efficiency analysis of the 4‐coil wireless power transfer system based on circuit theory and coupled‐mode theory, IEEE Conf. Ind. Electron. Applicat. (ICIEA), Hefei, China, June 5-7, 2016, pp. 1230-1234.
4 Z. Song et al., Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta‐reflectarrays, Materials Lett. 159 (2015), 269-272.   DOI
5 Y. Guo et al., Dispersion management of anisotropic metamirror for super‐octave bandwidth polarization conversion, Sci. Rep. 5 (2015), 8434:1-8434:7.
6 M. Pu et al., Anisotropic meta‐mirror for achromatic electromagnetic polarization manipulation, Appl. Phys. Lett. 102 (2013), 131906:1-131906:4.
7 W. Chen, C. A. Balanisand C. R. Birtcher, Checkerboard EBG surfaces for wideband radar cross section reduction, IEEE Trans. Antennas Propag. 63 (2015), 2636-2645.   DOI
8 C. Murrayand R. R. Franklin, Independently tunable annular slot antenna resonant frequencies using fluids, IEEE Antennas Wireless Propag. Lett. 13 (2014), 1449-1452.   DOI
9 E. Carrascoand J. Perruisseau-Carrier, Reflectarray antenna at terahertz using graphene, IEEE Antennas Wireless Propag. Lett. 12 (2013), 253-256.   DOI
10 M. M. Islam, M. R. I. Faruque, and M. T. Islam, A new metasurface based on meta‐atom cluster for terahertz applications, Microw. Opt Technol Lett 59 (2017), 2052-2057.   DOI
11 N. Rajakand N. Chattoraj, A bandwidth enhanced metasurface antenna for wireless applications, Microw. Opt Technol Lett. 59 (2017), 2575-2580.   DOI
12 H. X. Xu, G. M. Wang, and T. Cai, Miniaturization of 3‐D anistropic zero‐refractive‐index metamaterials with application to directive emissions, IEEE Trans. Antennas Propag. 62 (2014), 3141-3149.   DOI
13 Y. M. Pan et al., A low‐profile high‐gain and wideband filtering antenna with metasurface, IEEE Trans. Antennas Propag. 64 (2016), 2010-2016.   DOI
14 H. L. Zhu et al., Linear‐to‐circular polarization conversion using metasurface, IEEE Trans. Antennas Propag. 61 (2013), 4615-4623.   DOI
15 K. L. Fordand K. Shah, A study on the use of metasurface synthesis using electric and magnetic susceptibility, Loughborough Antennas Propag. Conf. (LAPC), Loughborough, UK, Nov. 14- 15, 2016, pp. 1-4.
16 Y. Zhou et al., A microwave RCS reduction structure by antarafacial reflection design of gradient metasurface, Progress Electromagn. Res. Symp. (PIERS), Shanghai, China, Aug. 8-11, 2016, pp. 4126-4130.