• Title/Summary/Keyword: microsphere

Search Result 223, Processing Time 0.026 seconds

Investigation of chemical modification on tosyl-activated polystyrene microsphere magnetic particle surface by infrared microscopy (토실 활성화된 폴리스티렌 마이크로구체 자성 입자 표면의 화학적 변형에 대한 적외선 연구)

  • Byun, Chang Kyu
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.225-233
    • /
    • 2016
  • The chemical engrafting of polymers on particle surface, plays an important role on selective partitioning of micro/nano-particles in the separated layers of liquid media, such as aqueous two phase systems (ATPSs). Three polymers, dextran, poly (ethylene glycol) and albumin were chosen and chemically conjugated to the polystyrene (PS) magnetic microparticle surface. The attachment of long-chained polymer chains which may switch the partition behavior, can be simply performed by SN2 substitution of various polymers having primary amine functional groups, with p-toluenesulfonyl (tosyl)-activated polystyrene magnetic micro-particles. The surface modification of microparticle was probed by infrared microscopy. The distinctive peak represents N-H stretching vibration mode for microparticles after the reaction and it is common for all three polymers examined. The locations of main peaks are similar for all micro-particles but different and distinguishable in fingerprint region.

Preparation of Hyaluronic Acid Microspheres with Enhanced Physical Stability by Double Cross-link or Alginate (이중 가교제 또는 알긴산에 의해 물리적인 안정성이 향상된 히알루론산 마이크로입자의 제조)

  • Kim, Dong-Hwan;Song, Chung-Kil;Balakrishnan, Prabagar;Park, Chun-Geon;Choi, Ae-Jin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • Hyaluronic acid (HA) is a natural polymer consisting of disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine. It has a great potential and success in cosmetic and biomedical applications. However, native HA is highly soluble and easily metabolized by enzymes such as hyaluronidase. Thus, various studies have been reported on modifying the physicochemical properties of HA, while maintaining its biocompatibility. For controlled drug delivery, many trials for fabricating HA microspheres were achieved under chemical reaction. The HA microspheres fabricated to improve the physical stability of HA using adipic acid dihydrazide (ADH) by cross-linking reaction has been reported earlier, however it lacks the desired physical stability and rapidly decomposes by swelling or enzymes. Therefore, we prepared double cross-linked HA microspheres (DC-HA microspheres) and alginate containing HA microspheres (AC-HA microspheres) to enhance its physicochemical properties. DC-HA microspheres were prepared using trisodium trimetaphosphate (STMP) under crosslinking reaction after ADH cross-linking reaction. AC-HA microspheres were prepared by adding alginate as a networking polymer. These microspheres were characterized by morphology, particle size, zeta potential, stability against hyaluronidase. Results showed that the DC-HA and AC-HA microspheres are more stable than that of HA microspheres.

Facile synthesis and characteristics of monodispersed ZnGa2O4 microsphere via solvothermal method (용매열합성법을 통한 단분산된 ZnGa2O4 구형 입자의 제조 및 특성)

  • Woo, Moo Hyun;Kang, Bong Kyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2016
  • Monodispersed $ZnGa_2O_4$ microspheres were synthesized by a facile two-step process consisting of a solvothermal method and calcination process. The prepared monodispersed $ZnGa_2O_4$ microspheres were aggregated into 3D microstructures by self-assembly with a large number of small $ZnGa_2O_4$ particles generated in nucleation. This nucleation and self-assembly making hierarchical microstructures were depended on the concentration of PEG (polyethylene glycol) due to CAC (critical aggregation concentration) theory. And also we controlled the amount of zinc acetate to make pure $ZnGa_2O_4$ phase. Additionally, to fix the optimized calcination condition, sample was characterized by TG-DTA to prove the thermal property in the calcination process and by FT-IR to identify the changes of functional group bonding between each element of the $ZnGa_2O_4$ precursor and oxide calcined at $900^{\circ}C$ for 1 h.

The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface (유체 계면에서 콜로이드 흡착에 대한 전해질 농도의 영향)

  • Park, Bum Jun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.527-530
    • /
    • 2013
  • I present the behavior of colloidal adsorption to an oil-water interface in the presence of electrolyte in an aqueous subphase. The optical laser tweezers and the piezo controller are used to trap an individual polystyrene microsphere in water and forcibly transfer it to the interface in the vertical direction. Addition of an electrolyte (i.e., NaCl) in the aqueous subphase enables the particle to attach to the interface, whereas the particle escapes from the trap without the adsorption in the absence of the electrolyte. Based on the analytical calculations of the optical trapping force and the electrostatic disjoining pressure between the particle and the oil-water interface, it is found that a critical energy barrier between them should exist. This study will provide a fundamental understanding for applications of colloidal particles as solid surfactants that can stabilize the immiscible fluid-fluid interfaces, such as emulsions (i.e., Pickering emulsions) and foams.

New Photochemistry of UV-Absorbing Chemicals in Phase-Controlled Polymer Microspheres (상구조가 조절된 고분자 미립구에서 자외선 흡수제의 거동에 대한 연구)

  • Lee Jong-Suk;Kim Jin-Woong;Kim Junoh;Han Sang-Hoon;Chang Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.361-367
    • /
    • 2004
  • In this study, a different UV (ultra-violet) ray absorption system is presented in which butyl methoxydiben-zoylmethane (BMDM, a model UV-A absorbent, 320$\~$400 nm) is stabilized in phase-controlled poly(methyl methacrylate) (PMMA) microspheres. The photochemistry of BMDM in the microspheres was investigated considering its phase characteristics therein. The analysis of a differential scanning calorimeter and X-ray diffractometer showed that the BMDM in the microspheres was present with a non-crystalline state. The phase control of BMDM in the polymer microsphere has an excellent ability to protect UV-A with maintaining its photo- and thermal stability. The results obtained in this study illustrate well that the phase control of the UV absorbents in the polymer microspheres is another key factor that de-termines its photochemistry and photostability in the final formulations.

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

Characterization and Controlled Release of Solid Dispersed Sibutramine (시부트라민 고체 분산체의 특성화 및 조절된 방출거동)

  • Park, Jung-Soo;Ku, Jeong;Lee, Jun-Hee;Kim, Yun-Tae;Park, Jong-Hak;Ahn, Sik-Il;Mo, Jong-Hyun;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • Solid dispersions of poorly water-soluble drug, sibutramine, were prepared with hydrophilic polymer, poly-N-vinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC) and organic acid, citric acid, to improve the solubility of drug. Physicochemical variation and shape of microsphere were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and Fourier-transform infrared spectroscopy (FT-IR). Microspheres containing additives showed more spherical shape than non additive microspheres. In vitro release behavior of microspheres presented at simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The solid dispersion form transformed the drug into an amorphous state and dramatically improved its dissolution rate. These data suggest that the solid dispersion technique is an effective approach for developing the appetite depressant drug products and various pharmaceutical excipients are able to control the release behaviors.

Drug Release Behavior and Degradability of Microspheres Prepared using Water-Soluble Chitosan (수용성 키토산으로 제조한 미세구의 분해성과 약물 방출 거동)

  • 장미경;최창용;김원석;정영일;나재운
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.291-297
    • /
    • 2004
  • Water-soluble chitosan micro spheres were prepared by emulsification of chitosan solution in mineral oil followed by cross linking reaction with different amount of the cross linking agent (glutraraldehyde), different chitosan concentration. Then, the physicochemical properties such as morphological change by degradation, drug loading efficiency, and drug release profiles were investigated with the drug loaded water-soluble chitosan microspheres. Norfloxacin loaded water-soluble chitosan micro spheres showed excellent drug entrapping capacities without burst release caused by surface bound drug. The absence of the surface bound drug also confirmed by X-ray diffraction study. Degradation and drug release studies showed that the amount of the crosslinking agent played a crucial role for drug loading, release and degradation. The water-soluble chitosan micro spheres showed more sustained drug release profiles with slower degradation and larger particle size by increasing crosslinking agent.

Fabrication of Fibroin Microspheres and Hollow Spheres (피브로인 미립구 및 중공미립구의 제조)

  • Park, Cheol-Wan;Lee, Shin-Young;Hur, Won
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.321-325
    • /
    • 2010
  • Fibroin is a biopolymer available in large quantity from silk fiber and has a long history of use as a suture proving biocompatibility. In this report, fibroin microspheres has been fabricated for biomaterial applications. W/O emulsion of regenerated fibroin droplets in a continuous phase of decane with mixed surfactants was dried to facilitate fibroin gelation and the condensed fibroin microspheres were harvested. The ratio of mixed surfactants and their proportions to decane were determined to prepare a stable W/O emulsion. A spherical form of fibroin gels was obtained from the W/O emulsion agitated at 600 rpm. Scanning electron microscopy revealed that number average sizes of the fibroin microspheres were 21.6 and 8.5 ${\mu}m$ when dried under ambient conditions or under vacuum, respectively. Tomography of the spheres revealed that their internal structures are packed or hollowed. Hollow and hemispherical forms of microspheres were also prepared by using porogen.

Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold

  • Doty, Heather A.;Courtney, Harry S.;Jennings, Jessica A.;Haggard, Warren O.;Bumgardner, Joel D.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.159-172
    • /
    • 2015
  • Treatment of polymicrobial infected musculoskeletal defects continues to be a challenge in orthopaedics. This research investigated single and dual-delivery of two antibiotics, vancomycin and amikacin, targeting different classes of microorganism from a biodegradable calcium sulfate-chitosan-nHA microsphere composite scaffold. The addition of chitosan-nHA was included to provide additional structure for cellular attachment and as a secondary drug-loading device. All scaffolds exhibited an initial burst of antibiotics, but groups containing chitosan reduced the burst for amikacin at 1hr by 50%, and vancomycin by 14-25% over the first 2 days. Extended elution was present in groups containing chitosan; amikacin was above MIC ($2-4{\mu}g/mL$, Pseudomonas aeruginosa) for 7-42 days and vancomycin was above MIC ($0.5-1{\mu}g/mL$ Staphylococcus aureus) for 42 days. The antibiotic activity of the eluates was tested against S. aureus and P. aeruginosa. The elution from the dual-loaded scaffold was most effective against S. aureus (bacteriostatic 34 days and bactericidal 27 days), compared to vancomycin-loaded scaffolds (bacteriostatic and bactericidal 14 days). The dual- and amikacin-loaded scaffolds were effective against P. aeruginosa, but eluates exhibited very short antibacterial properties; only 24 hours bacteriostatic and 1-5 hours bactericidal activity. For all groups, vancomycin recovery was near 100% whereas the amikacin recovery was 41%. In conclusion, in the presence of chitosan-nHA microspheres, the dual-antibiotic loaded scaffold was able to sustain an extended vancomycin elution longer than individually loaded scaffolds. The composite scaffold shows promise as a dual-drug delivery system for infected orthopaedic wounds and overcomes some deficits of other dual-delivery systems by extending the antibiotic release.