Browse > Article

Fabrication of Fibroin Microspheres and Hollow Spheres  

Park, Cheol-Wan (Department of Bioengineering and Technology, Kangwon National University)
Lee, Shin-Young (Department of Bioengineering and Technology, Kangwon National University)
Hur, Won (Department of Bioengineering and Technology, Kangwon National University)
Publication Information
Polymer(Korea) / v.34, no.4, 2010 , pp. 321-325 More about this Journal
Abstract
Fibroin is a biopolymer available in large quantity from silk fiber and has a long history of use as a suture proving biocompatibility. In this report, fibroin microspheres has been fabricated for biomaterial applications. W/O emulsion of regenerated fibroin droplets in a continuous phase of decane with mixed surfactants was dried to facilitate fibroin gelation and the condensed fibroin microspheres were harvested. The ratio of mixed surfactants and their proportions to decane were determined to prepare a stable W/O emulsion. A spherical form of fibroin gels was obtained from the W/O emulsion agitated at 600 rpm. Scanning electron microscopy revealed that number average sizes of the fibroin microspheres were 21.6 and 8.5 ${\mu}m$ when dried under ambient conditions or under vacuum, respectively. Tomography of the spheres revealed that their internal structures are packed or hollowed. Hollow and hemispherical forms of microspheres were also prepared by using porogen.
Keywords
fibroin; W/O emulsion; microsphere; hollow sphere; hemisphere;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 X, Chen, Z. Shao, N, S. Marinkovic. L. M. Miller, P. Zhou. and M. R. Chance, Biophys. Chem., 89, 25 (2001).   DOI   ScienceOn
2 T. Yucel. P. Cebe, and D. L. Kaplan, Biophys. J., 97, 2044 (2009) .   DOI   ScienceOn
3 R. Sugino, H. Masuda. J. Yao, T. Kameda, K. Enomoto, S. Amiya, A. Suzuki, and T. Asakura, Polymer Preprints(Japan), 49, 529 (2000).
4 J. L. Salager, M. Perez-Sanchez, and Y. Garcia, Colloid. Polym. Sci., 274, 81 (1996)   DOI   ScienceOn
5 W. Yu and M. Bousmina, J. Rheol., 47, 1011 (2003).   DOI   ScienceOn
6 D. Megias-Alguacil, K. Feigl, M. Dressler, P. Fischer, and E. J. Windhab, J. Non-Newtonian Fluid Mech., 126, 153 (2005).   DOI   ScienceOn
7 G.-S. Choi, Y.-S. Kim, H.-S. Jung. S.-W. Jang. and N.-S. Kim, Polymer(Korea), 33, 463 (2009).   과학기술학회마을
8 H. Zhang, X. J. Ju, R. Xie, C. J. Cheng, P. W. Ren, and L. Y. Chu, J. Colloid Interface Sci., 336, 235 (2009).   DOI   ScienceOn
9 R. E. Marsh, R. B. Corey, and L. Pauling, Biochim. Biophys. Acta, 16, 1 (1955).   DOI
10 F. N. Braun and C. Viney, lnt. J. Biol. Macromol., 32, 59 (2003).   DOI   ScienceOn
11 H. Wang, Y. Zhang, H. Shao, and X. Hu, Int. J. Biol. Macromol., 36, 66 (2005).   DOI   ScienceOn
12 E. Wenk, A. J. Wandrey, H. P. Merkle, and L. Meinel, J. Control. Release, 132, 26 (2008).   DOI   ScienceOn
13 J. H. Yeo, K. G. Lee, Y. W. Lee, and S. Y. Kim, Eur. Polym. J., 39. 1195 (2003).   DOI   ScienceOn
14 Z. Cao, X. Chen, J. Yao, L. Huang, and Z. Shao, Soft Matter, 3, 910 (2007).   DOI   ScienceOn
15 C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, Nucleic Acids Res., 28, 2413 (2000).   DOI
16 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).   DOI   ScienceOn
17 X. Wang, E. Wenk, A. Matsumoto, L. Meinel, C. Li, and D. L. Kaplan, J. Control. Release, 117, 360 (2007).   DOI   ScienceOn
18 C. Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin, Proteins, 44, 119 (2001).   DOI   ScienceOn