• Title/Summary/Keyword: microscopic behavior

Search Result 268, Processing Time 0.024 seconds

Observation of Spatial and temporal variability of sea skin surface temperature by a Thermal Infrared Camera

  • Tamba, Sumio;Yokoyama, Ryuzo;Parkes, Isabelle;David, Llewellyn-Jones
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.14-19
    • /
    • 1998
  • The MUBEX (MUtsu Bay sea surface temperature validation EXperiment) campaign has been held from 1995 to 1997 in summer. During the MUBEX campaign, a thermal infrared camera (TIC) installed on a research vessel, which was also equipped with other various observation devices, was intensively used to observe microscopic structure of sea skin surface temperature (SSST) behavior. We have now a total number of 500,000 images observed by the TIC under various weather conditions, i.e., very calm or wavy sea condition, and clear, patchy or cloudy sky condition. In this paper, we show typical SSST patterns observed by the TIC, and describe the result of statistical analysis of SSST.

  • PDF

Sintering Properties of Hydroxyapatite Derived from Tuna Bone

  • Park, Jin-Sam;Huh, Jeung-Soo;Kim, Hyung-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1131-1134
    • /
    • 2000
  • Hydroxyapatite (HA) ceramic was prepared using tuna bone powders and was characterized on properties of sintered samples. The aim was to prepare dense and bulk HA sintered suitable for clinical applications. Thermal analysis, X-ray diffraction analysis, microscopic observation, and mechanical evaluation were applied to characterize sintered HA to find optimum processing condition. The major phase of sintered HA was observed up to 1300$\^{C}$ and $\beta$-TCP was observed as temperature increased. The density of sintered HA was increased up to 1350$\^{C}$ and decreased with further increasing temperature. The flexural strength of sintered HA at 1350$\^{C}$ showed 58 MPa as the highest value in this work. The results suggest that the crystal phase and transformation characteristics of HA prepared from tuna bone are the same as the behavior of HA powders made by chemical synthesis.

  • PDF

Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock (가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성)

  • Song, Jun-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.

An Experimental Study on Anisotropic Tensile Properties of AZ31 Mg Alloy (AZ31B 마그네슘 합금의 인장특성 및 이방성의 실험적 연구)

  • Kim, S.H.;Lee, H.W.;Lee, G.A.;Kim, G.T.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • In this paper, anisotropic tensile properties of the AZ31B Mg-alloy sheet are obtained with the tensile test at elevated temperatures. Change of microscopic structures and the hardness is inspected after the solution heat treatment process in order to confirm the micro-structural stability of the used sheet metal. Results obtained from tensile tests show that it is very difficult to apply the conventional modeling scheme with the assumption of strain hardening to the forming analysis of the magnesium alloy sheet which shows the strain-softening behavior at the elevated temperature.

  • PDF

Macroscopic Behavior and Atomization Characteristics of Bio-diesel Fuels (바이오 디젤 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2004
  • This work was conducted to figure out the atomization characteristics of three types of bio-diesel fuels using a common-rail injection system. The process of spray development was visualized by using a spray visualization system composed of a Nd:YAG laser and an ICCD camera, The spray tip penetrations were analyzed based on the frozen images from the spray visualization system. On the other hand, the microscopic atomization characteristics such as the distributions of SMD and axial mean velocity were measured by using a phase Doppler particle analyzer system, It is revealed that the sprays of the bio-diesel fuels have larger SMD than that of diesel fuel mainly due to high viscosity of bio-diesel. Different characteristics of bio-diesel fuels were also measured in spray tip penetrations according to the fuels and mixing ration.

Capillary Electrophoresis of Microbes

  • Moon, Byoung-Geoun;Lee, Yong-Ill;Kang, Seong-Ho;Kim, Yong-seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.81-85
    • /
    • 2003
  • Direct analysis of microbes such as either gram-positive or gram-negative bacteria without cell lysis was investigated using capillary electrophoresis. Bacteria cells were directly introduced into the microbore fusedsilica capillary, then separated under high electric field in less than 15 min. It was found that a proper dispersion of bacteria cells was important for reproducible results. Migration behavior of bacteria at different storage condition was investigated and many unexpected peaks were observed from bacteria stored at room temperature due to the distortion of cells. This phenomenon was attributed to the change of size and shape of the same bacterium and confirmed by the scanning electron microscopic images.

Experimental Investigation on the Flow Characteristics of ER Fluids (ER유체의 유동특성에 관한 실험적 연구)

  • 김도태;장성철;최윤대
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.216-221
    • /
    • 1999
  • Electrorheological fluids (ERF) are suspensions which show an abrupt increase in rheological properties under electric fields. The rheological response is very rapid and reversible when the electric field is imposed and/or removed. Therefore, there are many practical applications using the ERF. The purpose of the present study is to examine the flow characteristics of ERF. First, the microscopic behavior of the ER suspension structure between two fixed parallel-plate brass electrodes applied dc high voltage for the stationary and flow of the ERF was investigated by flow visualization. The electrical and rheological properties of zeolite based ERF were reported.

  • PDF

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

Nonequilibrium Heat Transfer Characteristics During Ultrafast Pulse Laser Heating of a Silicon Microstructure

  • Lee Seong Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1378-1389
    • /
    • 2005
  • This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature is observed for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.

Energy and strength in brittle materials

  • Speranzini, Emanuela
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • A study concerning the strength of brittle materials is presented in this paper. The failure behavior was investigated examining the plane of the crack after the failure and comparing the results obtained with those deriving from the fracture mechanics theory. Although the proposed methods are valid in general for brittle materials, the experiment was performed on glass because the results are more significant for this. Glass elements of various sizes and different edge finishes were subjected to bending tests until collapsing. The bending results were studied in terms of failure load and energy dissipation, and the fracture surfaces were examined by means of microscopic analysis, in which the depth of the flaw and the mirror radius of the fracture were measured and the strength was calculated. These results agreed with those obtained from the fracture mechanics analysis.