Browse > Article

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin  

Lee Deok-Bo (Reliability Analysis Research Center, Hanyang University)
Publication Information
Fibers and Polymers / v.5, no.4, 2004 , pp. 259-263 More about this Journal
Abstract
Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.
Keywords
Acoustic emission; Time-frequecy analysis; Fracture energy; Damage zone; Rubber-Modified Epoxy Resin; Fracture Toughness; Toughening mechanism; Rubber Particle;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. A. Pearson and A. F. Yee, J. Mater. Sci., 21, 2475 (1986)   DOI   ScienceOn
2 A. J. Kinloch, S. J. Shaw, D. A. Tod, and D. L. Hunston Polymer, 24, 1341 (1983)   DOI   ScienceOn
3 L. T. Manzione and J. K. Gillham, J. Appl. Polym., 26, 889 (1981)   DOI   ScienceOn
4 D. B. Lee, T. Ikeda, M. Todo, N. Miyazaki, and K. Takahashi, Trans. Japan Soc. Mech. Eng., 65, 25 (1998)
5 K. Arakawa, T. Mada, and K.Takahashi, Trans. Japan Soc. Mech. Eng., 66, 883 (2000)   DOI
6 D. B. Lee, J. Korean Fiber Soc., 39, 430 (2002)
7 R. Bagheri and R. A. Pearson, Polymer, 37,4529 (1996)   DOI   ScienceOn
8 R. A. Pearson and A. F. Yee, J. Mater. Sci., 21, 3828 (1991)
9 H. R. Daghyani, Y. W. Mai, and J. Wu, J. Mater. Sci. Lett., 13, 1330 (1994)   DOI   ScienceOn
10 T. K. Chen and Y. H. Jan, J. Mater. Sci., 21, 111 (1992)
11 D. B. Lee, T. Ikeda, and N. Miyazaki, The Soc. Mat. Sci. (Japan), 50, 55 (2001)
12 A. S. Holik, R. P. Kambour, S. Y. Hobbs, and D. G. Fink, Microstructural Sci., 1, 357 (1979)
13 D. B. Lee, T. Ikeda, N. Miyazaki, and N. S. Choi, Trad. ASME J. Eng. Mat. & Tech., 124, 206 (2002)   DOI   ScienceOn
14 D. B. Lee, T. Ikeda, N. Miyazaki, and N. S. Choi, J. Mater. Sci. Lett., 22, 229 (2003)   DOI   ScienceOn
15 D. B. Lee, T. Ikeda, N. Miyazaki, and N. S. Choi, Eng. Frac. Mecha., 69, 1363 (2002)   DOI   ScienceOn
16 D. B. Lee, J. Korean Fiber Soc., 39, 323 (2002)
17 A. F. Yee, D. M. Li, and X. Li, J. Mat. Sci., 28, 6392 (1993)   DOI   ScienceOn
18 A. F. Yee and R. A. Pearson, J. Mater. Sci., 21, 2462 (1986)   DOI   ScienceOn
19 W. D. Bascom, J. Mater. Sci., 16, 2657 (1981)   DOI   ScienceOn