• Title/Summary/Keyword: micropore

Search Result 201, Processing Time 0.022 seconds

Fabrication and Characterization of Porous Non-Woven Carbon Based Highly Sensitive Gas Sensors Derived by Magnesium Oxide

  • Kim, Yesol;Cho, Seho;Lee, Sungho;Lee, Young-Seak
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • Nanoporous non-woven carbon fibers for a gas sensor were prepared from a pitch/polyacrylonitrile (PAN) mixed solution through an electrospinning process and their gas-sensing properties were investigated. In order to create nanoscale pores, magnesium oxide (MgO) powders were added as a pore-forming agent during the mixing of these carbon precursors. The prepared nanoporous carbon fibers derived from the MgO pore-forming agent were characterized by scanning electron microscopy (SEM), $N_2$-adsorption isotherms, and a gas-sensing analysis. The SEM images showed that the MgO powders affected the viscosity of the pitch/PAN solution, which led to the production of beaded fibers. The specific surface area of carbon fibers increased from 2.0 to $763.2m^2/g$ when using this method. The template method therefore improved the porous structure, which allows for more efficient gas adsorption. The sensing ability and the response time for the NO gas adsorption were improved by the increased surface area and micropore fraction. In conclusion, the carbon fibers with high micropore fractions created through the use of MgO as a pore-forming agent exhibited improved NO gas sensitivity.

Adsorption and Antibacterial Properties of Metal Ion Treated Activated Carbon Fiber (금속이온이 처리된 활성탄소섬유의 흡착과 항균성)

  • Oh, Won-Chun;Bang, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.131-135
    • /
    • 2000
  • We studied adsorption isotherm, surface properties and antibacterial activity of Cu treated activated carbon fiber (ACF). The BET surface area of Cu treated ACF are distributed to $688.2-887.8m^2/g$. The adsorption results show that BET surface areas move gradually to lower value with increasing treated Cu mole concentration. Using t-method, the specific micropore volumes and average pore size were obtained. From the SEM study, it is also observed that many of micropores in activated carbon fiber are blocked surface after the treatment. And we also observed that the activity of E. coli in kind of colon bacillus increases gradually to larger range with increasing Cu mole ratio. From these results, we suggest the antibacterial mechanism for metal treated ACF.

  • PDF

Oil Absorption Effects of Organic Porous Materials (유기 다공성 소재의 흡유 효과)

  • Kang, Young-Goo;Han, Sang-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.86-91
    • /
    • 2006
  • Oil spills caused by the accidents have been occurred from house and factory waste, grounded tanker, the rupture of storage tank and oil pipelines, the deterioration of various industrial facilities, etc. Many oil spills result in contamination of shorelines and workplace. Fire and explosion may happen from these spills. There are several technologies used for clean-up application, which include use of oil dispersing agents, absorbents, solidifiers, booms and skimmers by physical, chemical, and biological methods. Methods for oil spill clean-up operation are classified into the absorption type, gel type and self-swelling type. Porous materials with oil absorptive properties are classified into micropore, mesopore, and macropore depending on their pore sizes. Recently, new porous materials with smaller size have been developed, but the selective oil absorption in water-in-oil interface demonstrates the macro pore size. In this study oil absorption effects were evaluated using the organic porous materials with a complex function of gel type and swelling type. Samples were subjected to analysis by FT-IR spectroscopy and were characterized in terms of gel formation and morphologies. Oil sorption capacity, pressure retention force and gel strength were also measured. From these results, the physicochemical reactivity before and after gelation was verified and the industrial applications of clean-up operation were suggested.

Highly Porous Pillared Clay with Multistacked $SiO_2/TiO_2$ Nanosols

  • 조진호;박주형;윤주병
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1185-1188
    • /
    • 1998
  • Layered nanocomposite, SiO2/TiO2 sol pillared clay, has been prepared by the ion exchange reaction of Na' ion in montmorillonite with positively charged mixed SiO2/TiO2 sol. The nanosized sol particles were synthesized by mixing SiO2 sol solution with TiO2 one, which is obtained by acidic hydrolysis of TEOS and TiCl4, respectively. From powder XRD, the basal spacing (d001) of the sample calcined at 400 ℃ was found to be ca. 60 Å, due to the multistacking of nanosized SiO2 and TiO2 sol particles, which was confirmed by the pore size analysis from 129Xe NMR and micropore analysis calculated from nitrogen adsorption. The BET specific surface area shows the value of 684 m2g-1 (Langmuir 1115 m2g-1), which is the highest among various pillared clays ever reported previously, and the total porosity is found to be 0.51 mlg-1, and the pores are mainly composed of micropore with a size of ca. 11.8 Å. This result agrees with the adsorption capacity obtained from water adsorption. According to diffuse reflectance ultraviolet-visible spectroscopy, it is found that the TiO2 particles stabilized in the interlayer space of montmorillonite are quantum-sized of ca. 20 Å.

Preparation of Activated Carbon from Wasted Food by Chemical Activation with Zinc Chloride (염화아연 약품활성화를 이용한 음식물쓰레기로부터 활성탄 제조)

  • Kang, Hwa-Young;Lee, Young-Dong;Kim, Se-Hoon;Park, Sung-Bong;Jung, Jae-Sung;Park, Sang-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.900-906
    • /
    • 2008
  • It was studied to utilize wasted food as a starting material to produce for activated carbon. The wasted food was chemically activated with zinc chloride. Experiments were carried out at different chemical ratios(activating agent/wasted foods), activation temperatures, and activation time. The activated products were characterized by measuring the iodine and methylene blue number, the BET surface area, the pore volume, the micropore ratio, the pore diameter, the yields and the scanning electron microscope(SEM). For the products activated by impregnation ratio of 1.0 of ZnCl$_2$ at 500$^{\circ}C$ for 60 min in a rotary kiln reactor had iodine number of 480 mg/g, methylene blue number of 95 mL/g, BET surface area of 410 m$^2$/g, pore volume of 0.248 cm$^3$/g, and average pore diameter of 2.43 nm, respectively. The activated carbon obtained had the contribution of micropore area of 70.7% to the total pore area and micropore volume of 53.2% to the total pore volume.

Preparation and properties of antibacterial activated carbon fiber (항균성 탄소섬유의 제조와 특성)

  • 오원춘;김범수;임창성;장원철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.165-171
    • /
    • 2002
  • The study on the adsorption, the surface properties and the antibacterial effects of the metal-treated pitch based activated carbon fibers was carried out. From the adsorption studies on the series of metal-treated activated carbon fiber, the specific surface areas of the metal treated activated carbon fiber obtained from BET equation were in the range of 113.2~1574 $m^2$/g for the Ag-ACFs. And that of Cu treated ACF are distributed to 688.2-887.8 $\m^2$/g. And, the specific surface areas of the Ni-treated pitch based ACFs were in the range of 692.6~895.2 $\m^2$/g. From the ${\alpha}_s$- method, 0.06~1.1 cm^3/g of the micropore volumes were obtained from Ag-ACFs. And, 0.1~0.2 cm^3/ and 0.2~0.6 cm^3/g of the micropore volumes were obtained from Cu and Ni-ACFs, respectively. And, from the SEM morphology results, it was observed that the surface of activated carbon fiber are partially blocked and coated by metal after the treatment. Finally, from the antibacterial effects of metal-treated activated carbon fiber against E. coli, the areas of antibacterial effect become larger with the increase in mole ratio of metal treated. And, from the antibacterial effects using Shake flask method against E. coli, the percentage of the effects was 92.5~100 % and the antibacterial effect was increased with the increase in mole concentration of metal treated.

Impregnation Effects of Water Soluble Organic and Inorganic Chemicals into Micropore of Cell Wall of Waste Paper fiber(I) (페지섬유의 세포벽 Micropore 속으로 수용성 유기 및 무기화합물 충전효과(제1보))

  • 이병근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 1997
  • The fiber wall filling(FWF) technology, which is based on Precipitatin of fillers in the micropores of the cell wall structure of never-dried chemical pulp fiber, has been developed to improve filling and loading process in papermaking. In presenting FWF technique here, micropores of pulp fiber are first impregnated with an ionic solution of water soluble salt and consecutively impregnated with the second salt solution. This procedure generates an insoluble precipitate within the micropores of cell wall by chemical interaction of these two ionic salt solutions This is the first attempts to use FWF technology for the quality of waste paper grade which is recycled in papermaking, even though this FWF technology has been impressively improved for never-dried chemical pulp in filling and loading process of papermaking. The precipitated amount of CaCO$_3$ and SrCO$_3$ reached 5-6% and 4-5% of the waste paper weight respectively, which was measured by ash content of the burned waste paper fiber. On the other way the precipitated amounts of those materials impregnated into never-dried chemical pulp fiber have reached 17-18% and 16-18% respectively. The micropore loading technique gives optical and physical properties to the handsheets formed with celt-wall-filled fibers which are better than those handsheet properties resulting from conventional loading. The papers made from the cell-wall-filled pulps are stronger than those with the customary location of filler between the fibers.

  • PDF

Characterization and Preparation of Al-Pillared Clay (Aluminium-Pillared Clay의 제조 및 특성)

  • Park, Se-Jun;Ha, Baik-Hyon;Jeong, Soon-Yong;Suh, Jeong-Kwon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.304-309
    • /
    • 1999
  • Aluminum-pillared clay was prepared by the intercalation of Al-hydroxy oligomer into domestic bentonite. The solid products are characterized by XRD, nitrogen adsorption/desorption, EDX, and SEM. The solid products show relatively high specific surface areas in the range of $104{\sim}228m^2/g$, and their specific surface area, micropore surface area, and micropore volume increase with increasing the mole ratio of OH/Al. From the results of pore size distribution calculated by BJH equation, it was found that aluminum-pillared clay also contains much mesopore near $40{\AA}$. These results indicate that Al-hydroxy oligomer was intercalated into bentonite, and aluminum oxide was pillared among the layers of bentonite, and micropore and mesopore was finally developed into layers. As OH/Al mole ratio increases, the thermal stability of aluminum-pillared clay increases. This result can be explained by the fact that the density of layers is increased due to the formation of aluminum pillars.

  • PDF

Improving CO2 Adsorption Performance of Activated Carbons Treated by Plasma Reaction with Tetrafluoromethane (사불화탄소 플라즈마 반응에 의해 처리된 활성탄소의 CO2 흡착 성능 향상)

  • Chung Gi Min;Chaehun Lim;Seo Gyeong Jeong;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • CO2 is known as one of the causes of global warming, and various studies are being conducted to capture it. In this study, a tetrafluoromethane (CF4) plasma reaction was performed to improve the CO2 adsorption of activated carbons (ACs) through changes in surface characteristics, and the adsorption characteristics according to the reaction time were considered. After the reaction, the micropore volume increased up to 1.03 cm3/g. In addition, as the reaction time increased, the fluorine content on the surface increased to 0.88%. It was possible to simultaneously control the pore properties and surface functional groups of the ACs through this experiment. Also, the CO2 uptake of surface-treated ACs improved up to 7.44% compared to untreated ACs, showing the best performance at 3.90 mmol/g when the reaction time was 60 s. This is due to the synergy effect of the fluorine functional groups introduced on the surface of the ACs and the increased micropore volume caused by the etching effect. It was found that the micropore volume had a greater effect on CO2 adsorption in the region where the CO2 uptake was less than 3.67 mmol/g, while the added fluorine content had a greater effect in the region above that.

Carbon-Silica Membrane for Gas Separation (탄소-실리카막을 이용한 기체분리)

  • Lee, Young-Moo;Park, Ho-Bum
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.77-102
    • /
    • 2004
  • Carbon materials obtained from organic polymers are usually amorphous structure. The structure of carbon materials is not nearly as well defined as that of zeolite. Carbon are amorphous materials with comparatively wide pore size distribution as compared to the crystalline zeolites with monodisperse ultramicropore and micropore dimensions. (omitted)

  • PDF