• Title/Summary/Keyword: microplastic

Search Result 67, Processing Time 0.02 seconds

Microplastic Management for Preventing Risk of Persistent/Bioaccumulative Substance (잔류성.생물축적성 물질 피해저감을 위한 미세플라스틱(Microplastic) 관리방안)

  • Park, Jeong-Gue;Gan, Sun-Yeong
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.65-98
    • /
    • 2014
  • Plastics of the marine environment are broken gradually down into smaller particles by chemical weathering, called "microplastic". Microplastics absorb organic pollutants that are persistent bioaccumulative substances. If marine animals ingested microplastic added to contaminant, it will lead to a bioaccumation through the food web. It eventually destroy health of marine environment and is harmful to marine top predators including humans. Also, Microplastics can impact marine animals by leaching the endocrine disruptor in microplastic itself as well as playing an adsorbent role of organic pollutants. Persistent and bioaccumulative substances in Korea have been regulated in terms of chemical risk but existing regulations largely have been limited in land-based source management of microplastic. Thus, the harmful impact will be increased whether the microplastics absorbed contaminants. To prevent risk of persistent bioaccumulative substances, this study suggests the following: (1) the strict management of microplastic by designating the hazardous substances, (2) expand the use of biodegradable plastic, (3) the effort for reuse and recycle, (4) the expand of microplastic clean-up programs.

  • PDF

Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water (펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구)

  • Han, Seung Heon;Kim, Dae Geun;Jung, Haeng Yun;Kim, Seon Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.

Microplastic release from damaged commercial teabags

  • Kim, Sion;Jo, Eun Ha;Choi, Soohoon
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • The use of plastics in our everyday lives have been drastically increased during the last few decades. However with the usage of commercial plastic products there is a possibility of microplastic consumption, due to the fragmentation of the products. Additionally, the potential for microplastic ingestion may also be increased by using damaged products. Hence, the current study was conducted to understand the potential release of micro/nano plastics and organic matter from damaged teabags. To check the leakage tendency, the amount of damage to the tea bags from 1-10 cm were tested along with temperatures of 25-70℃, and exposure times from 5 min to 1 hr was tested. Release of fibrous micro/nanoplastics, and organic leachate from the damaged teabags were observed to understand the outflow conditions. Results showed that with the increased degree of damage, temperature, and exposure time increased the release of fiberous matter, where the increase of temperature, and exposure time increased organic leachate. Additional analysis confirmed the leachate of nylon polymers into the heated water.

Research Trends of Microplastic in Food via Centrality Analysis Method (중심성 분석을 이용한 식품 미세플라스틱의 최근 연구동향)

  • Cho, Sung-Yong;Byun, Ki-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.508-515
    • /
    • 2020
  • This study examined the research trends of "Microplastic in food" with a scholar databaseusing the centrality analysis method. The data was based on research papers published from 2011 to 2020, sorted by "microplastic" and "food". The centrality analysis methodology(Degree centrality, Closeness centrality, Betweenness centrality) was applied, followed by a keyword-based frequency occurrence analysis. The results suggested that more than 30% of the total keywords were related to "marine" and "pollution". Therefore, research on the effects of microplastic pollution on the ecosystem had mainly been conducted. On the other hand, only 6% of the keywords were related to "toxicity" and "ingestion". Hence,the number of studies on microplastic exposure caused by bioaccumulation or food are still insufficient. These results can be used to provide directions for future research, as well as provide basic data for political decision-making on the environmental hazards of microplastic.

Analysis of microplastics released from textiles according to filter pore size and fabric weight during washing (세탁 중 세탁물 중량과 여과 기공 크기에 따른 미세플라스틱 분석)

  • Choi, Sola;Kwon, MiYeon;Park, Myung-Ja;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study observed the release of microplastics according to washing weights and filtering conditions, measured microplastic generation rates, fiber lengths, and fiber diameters. This study attempted to present data for the development of filters that decrease microplastic generation. For test samples, polyester piled knit fabric (cut-pile) was selected, which currently has the highest amount of consumption in the clothing industry, but can easily cause marine pollution because of its low biodegradability. For test equipment, a drum washer was used and microplastics were collected using two filter pore sizes, 5 ㎛ and 20-25 ㎛. Microplastic fibers weights and lengths were measured. The results of the experiment showed the following: 1) The release of microplastics differed according to the fabric weights and washing process; 2) washing fabric weights showed a differences in the collection amount according to the filter pore size (5 ㎛, 20-25 ㎛); 3) observations of differences in the lengths of the microplastics that occur during the washing process by filter pore size were made. Fibers with shorter lengths appeared with filter pore sizes of 5㎛ in comparison to filter pore sizes of 20-25㎛. The results from this study on microplastic generation by fabric during washing, demonstrated the following conclusions that can be used to reduce the release of microplastics. First, the release of microplastics according to fabric weights and washing courses are affected by physical force. Therefore, it is necessary to reduce the amount of physical force due to water flow, increase the fabric weight, or wash the material in low temperatures. Second, in the manufacturing of washing machines, microplastic filtration can be promoted or legislatation supporting microplastic filtration can be introduced.

Consumers' Acceptance and Willingness to Pay for Products with Eco-Friendly Materials in Circular Economy: A Case of Clothing Made with Microplastic Emission-Reducing Materials (순환경제 시대 소비자들의 친환경 소재 제품에 대한 수용성과 지불의사: 미세플라스틱 배출저감 소재의류를 사례로)

  • Eom, Young Sook
    • Environmental and Resource Economics Review
    • /
    • v.31 no.1
    • /
    • pp.1-30
    • /
    • 2022
  • This study is to investigate consumers' acceptance and their willingness to pay for clothes made of materials with low microplastic emissions as an alternative to synthetic fibers made of plastics by applying the contingent valuation method. A nationwide web-based survey was conducted for 1,052 respondents proportional to region, age, and gender during February 2021. More than 75% of the sample expressed intentions to purchase microplastic emission-reducing clothing instead of synthetic fiber clothing, and more than 80% of them have stated their willingness to pay for additional prices. A variation of Heckman's sample selection model was adopted to estimate factors affecting respondents' intentions to pay for additional prices, in which the probit model of intentions to purchase the clothing with alternative materials was used as a sample selection equation. While respondents were sensitive to the amounts of price increases suggested in the CV scenario, they expressed high acceptance and preferences for eco-friendly materials regardless of the microplastic emission-reducing levels. Consumers in the circular economy were willing to pay for the range of 41,000 to 51,000 won for a pair of clothing made with microplastic emission-reducing materials. In addition, as the microplastic emission-reducing rate has increased from 50% to 80%, the willingness to pay estimates were also significantly increased, ranging from 41,000~50,500 to 42,000~51,700 won.

Applicability of the WASP8 in simulating river microplastic concentration (WASP8 모형의 하천 미세플라스틱 모의 적용성 검토)

  • Kim, Kyungmin;Park, Taejin;Jeong, Hanseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.337-345
    • /
    • 2023
  • Monitoring river microplastics is a challenging task since it is a time-consuming and high-cost process. The use of a physical model to have a better understanding of river microplastics' behaviors can complement the challenging monitoring process. However, there have been very limited studies on modeling river microplastics. In this study, therefore, we evaluated the applicability of one commonly used river water quality model, i.e., the Water Quality Analysis Simulation Program (WASP), in simulating the microplastic concentration in the river environment. We simulated the microplastic concentration in the Anyangcheon stream using the WASP's biochemical oxygen demand (BOD) and suspended solid (SS) variables as possible surrogate variables for the microplastics. Simulation analyses indicate that the SS state variable performs better than the BOD state variable to mimic the observed concentrations of microplastics. This is because of the characteristics of each water quality parameter; the BOD variable, a biochemical indicator, is inappropriate for modeling the behaviors of microplastics, which have generally constant biochemical features. In contrast, the SS variable, which has similar physical behaviors, followed the observed patterns of the microplastic concentrations well. To build a more advanced and accurate model for simulating the microplastic concentration, comprehensive and long-term monitoring studies of the river microplastics under different environmental conditions are needed, and the unit of microplastic concentration should be carefully addressed before its modeling application.

A Review of Research Trends in Microplastic Analysis in an Aquatic System (수환경 내 미세플라스틱 검출분석법 최신 동향 연구)

  • Oh, Soorim;Lee, Do Gyun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.316-325
    • /
    • 2021
  • Human-made plastics takes more than 500 years to break down and have been introduced into the ecosystem, threatening terrestrial and aquatic organisms. By 2025, there will be more than 250 million tons of plastics in the ocean. Although studies regarding microplastics have been exponentially increasing since 2015, international standards for defining the size classification for microplastics, as well as methods for qualitative/quantitative analysis have not been concluded yet. Thus, in this study, the latest trends in analytical methodologies have been reviewed. Further, the study suggests directions for future research approaches can be taken to analyze aquatic microplastics, which could be as useful information for establishing effective microplastic management policy via standardization in microplastic analysis.

Scanning Electron Microscopic Study on the Microplastics in Rinse Off Cosmetics (피부 청결 화장품에 첨가된 미세플라스틱의 주사전자현미경적 연구)

  • Kim, Kyung-Sook;Chang, Byung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.252-257
    • /
    • 2019
  • We investigated the microstructure and morphological characteristics of microplastics added to rinse off cosmetics by scanning electron microscope. The size of the microplastic was in a wide range of sizes, from $250{\mu}m$ to 1.5mm in diameter. The small microplastics were in the shape of elongated particles and the large microplastics were cuboidal. Most cubic microplastics were observed in the form of squares or rectangles. The surface of the cubic microplastic was smoothly observed without protruding portions, but irregularly many gaps were formed. The gap between openings was measured from about $5{\mu}m$ to $20{\mu}m$. It has not been confirmed that these gaps are formed from the surface of the microplastic to the inside there of.

Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films (미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성)

  • Ji Won Yang;Youn-Jun Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.184-192
    • /
    • 2023
  • Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.