• Title/Summary/Keyword: microorganism growth

Search Result 583, Processing Time 0.022 seconds

Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank (제방 환경 조건에서 베타글루칸-잔탄검 계열 바이오폴리머가 식물 생장 및 경쟁에 미치는 영향)

  • Jeong, Hyungsoon;Shin, Haeji;Jang, Ha-young;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.208-217
    • /
    • 2020
  • A biopolymer based on microorganism-derived β-glucan and xanthan gum is being studied as a new eco-friendly material that stabilizes the riverbank slope, and also promotes vegetation growth. However, it is still inconclusive whether biopolymers have a positive effect on plant performance in the riverbanks which are subjected to various climatic factors and plant competitions. For a practical ecological evaluation of the biopolymers, their effect on plant growth promotion was studied in a natural environment. Considering the relationship between competition and plant community formation, the effects of biopolymers on competition were also investigated. For four plant species (Echinochloa crus-galli, Pennisetum alopecuroides, Leonurus japonicus, and Coreopsis lanceolata), the biopolymer effects under intra/interspecific competition were tested at the riverbank (20 m × 10 m) near Samjigyo Bridge in Damyang-gun, Jeollanam-do. A biopolymer powder was mixed with water and commercial soil following the manufacturer's recommendations. The soil mixed with the biopolymer was filled in a pot or applied to the surface of the commercial soil with a thickness of 3 cm. Across the competition treatments, the biopolymer treatment promoted root growth of the target plant species and decreased the specific leaf area. The total biomass and shoot dry weight of P. alopecuroides increased in response to the biopolymer treatment. The competition treatment decreased the total biomass and shoot dry weight compared to the case without competition. Notably, such a competitive effect was similar in all the biopolymer treatments. Thus, biopolymers, when mixed with soil, promote the growth of some plant species, but do not appear to affect the competitive ability of plants.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Application of Predictive Microbiology for Microbiological Shelf Life Estimation of Fresh-cut Salad with Short-term Temperature Abuse (PMP 모델을 활용한 시판 Salad의 Short-term Temperature Abuse 시 미생물학적 유통기한 예측에의 적용성 검토)

  • Lim, Jeong-Ho;Park, Kee-Jea;Jeong, Jin-Woong;Kim, Hyun-Soo;Hwang, Tae-Young
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.633-638
    • /
    • 2012
  • The aim of this study was to investigate the growth of aerobic bacteria in fresh-cut salad during short-term temperature abuse ($4{\sim}30^{\circ}C$temperature for 1, 2, and 3 h) for 72 h and to develop predictive models for the growth of total viable cells (TVC) based on Predictive food microbiology (PFM). The tool that was used, Pathogen Modeling program (PMP 7.0), predicts the growth of Aeromonas hydrophila (broth Culture, aerobic) at pH 5.6, NaCl 2.5%, and sodium nitrite 150 ppm for 72 h. Linear models through linear regression analysis; DMFit program were created based on the results obtained at 5, 10, 20, and $30^{\circ}C$ for 72 h ($r^2$ >0.9). Secondary models for the growth rate and lag time, as a function of storage temperature, were developed using the polynomial model. The initial contamination level of fresh-cut salad was 5.6 log CFU/mL of TVC during 72 h storage, and the growth rate of TVC was shown to be 0.020~1.083 CFU/mL/h ($r^2$ >0.9). Also, the growth tendency of TVC was similar to that of PMP (grow rate: 0.017~0.235 CFU/mL/h; $r^2=0.994{\sim}1.000$). The predicted shelf life with PMP was 24.1~626.5 h, and the estimated shelf life of the fresh-cut salads with short-term temperature abuse was 15.6~31.1 h. The predicted shelf life was more than two times the observed one. This result indicates a 'fail safe' model. It can be taken to a ludicrous extreme by adopting a model that always predicts that a pathogenic microorganism will grow even under conditions so strict as to be actually impossible.

A Study of Shelf-Life and Antimicrobial Activity on Putrefactive Microorganisms related to Soybean Curd of Persicaria hydropiper L. extracts (두부 부패 미생물에 대한 여뀌 추출물의 항균활성과 저장성 연구)

  • Oh, Kwang Yul;Ahn, Sun-Choung;Oh, Sun Min
    • Culinary science and hospitality research
    • /
    • v.22 no.3
    • /
    • pp.198-211
    • /
    • 2016
  • The objective of this study was to provide basic data that would help develop the natural preservatives that could replace them. This study examined antibacterial activity and preservative effects in soybean curd. When the concentration of Persicaria hydropiper L. was 1,000 ppm in the antibacterial activity by the paper disk law of three cultures(Bacillus subtilis KY-3, Bacillus sp. KY-7, Bacillus methylotrophicus KY-11) selected from 21 kinds of microorganism separated from tofu anaerobes, the clear zone (mm), which was similar to benzoic acid 0.1 M, the comparison group, was measured. The results were as follows. The result of impeding growth in liquid culture indicated considerable suppression of the growth of bacteria in the concentration of 800 ppm and 1,000 ppm respectively. In the measure of MIC, KY-3 and KY-7 were 0.06%, and KY-11 was 0.05%. For the changes in pH by concentration, three cultures and tofu anaerobes were not increased to $10^{5-6}/g$ in 1,000 ppm. In addition, in the search of total number was employed to find the preservative effects of tofu. Therefore, this study expect the Persicaria hydroper L. extract on preservative effects of tofu, which can be easily exposed to food poisoning bacteria in the food safety as well as improving the possibility of natural alternative preservatives.

Quality Changes of Vegetables by different Cooking Methods (조리방법에 따른 채소류의 품질 변화)

  • Kim, Byeong-Cheol;Hwang, Jin-Young;Wu, Hyun-Jung;Lee, Se-Mi;Cho, Hyung-Yong;Yoo, Young-Mi;Shin, Hae-Hun;Cho, Eun-Kyung
    • Culinary science and hospitality research
    • /
    • v.18 no.1
    • /
    • pp.40-53
    • /
    • 2012
  • The quality changes of vegetables including cucumbers, young pumpkins, carrots, radishes, onions by different cooking methods in $90^{\circ}C$ water, 0.5% NaCl solution, 1.0% NaCl solution and $400^{\circ}C$ superheated steam were investigated. The changes in pH of cooked vegetables were increased. Hunter color system values for L(lightness), a(redness) and b(yellowness) of the vegetables cooked in $400^{\circ}C$ supetbeated steam for 30 seconds were less compared with those in $90^{\circ}C$ water, 0.5% NaCl solution and 1.0% NaCl solution. The microbial growth was inhibited very effectively when the vegetables cooked in $400^{\circ}C$ superheated steam for 30 seconds. After cooked in $90^{\circ}C$ water, 0.5% NaCl solution, 1.0% NaCl solution, $400^{\circ}C$ superheated steam, vitamin C content decreased by different ratio depending on cooking methods and vegetable varieties. Based on the results of the quality changes of cooked vegetables, the superheated steam cooking method showed a positive effect on sterilization and maintaining pH, color, hardness of vegetable tissues, vitamin C content. The data obtained from this study could be utilized as basic information for the optimum conditions of superheated steam cooking to develope HMR(Home Meal Replacement).

  • PDF

Cultural Conditions of Heavy Metal-ion Tolerant Microorganism and Accumulation of Heavy Metal-ion into the Cells. (중금속내성균주의 배양조건 및 균체내 축적)

  • Yu, Tae-Shick;Song, Hyung-Ik
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.59-64
    • /
    • 1981
  • The cultural conditions and the intra cellular accumulation of cadmium was studied using a cadmium tolerant yeast strain B-7 which had been isolated from activated sludge collected from a zinc mining area. The organism was able to grow in a medium containing 3,000 $\mu\textrm{g}$/$m\ell$ of cadmium-ion. (C $d^{++}$) Optimum conditions for the growth of the organisms were 20~22$^{\circ}C$ and pH 5.0~8.0 under aerobic condition. The maximum cadmium accumulation was observed when the organism was grown at pH 6.0. The growth of B-7 was not affected by the addition of a silicone-based antifoamer, which stimulated the intra cellular accumulation of cadmium. The intra cellular cadmium accumulation started after the cell ceased to grow. One gram of cells accumulated 34.17mg of cadmium when the organism was grown in a medium containing 500 $\mu\textrm{g}$/$m\ell$ of cadmium and 0.2%, v/v silicone-based antifoamer at 28$^{\circ}C$ for 48 hours with shaking. About 73 % of the accumulated heavy metal by the organism was found in the cytoplasm.m.

  • PDF

Antimicrobial Activity of Essential Oils from Mentha arvensis L. var. piperascens Malivaud and Agastache rugosa O. Kuntze on Escherichia coli and Salmonella typhimurium (대장균과 살모넬라균에 대한 박하와 배초향 정유성분의 항균활성)

  • Lee, Seung-Eun;Park, Chun-Geon;Cha, Moon-Seok;Kim, Jin-Kyong;Seong, Nak-Sul;Bang, Kyong-Hwan;Bang, Jin-Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.3
    • /
    • pp.206-211
    • /
    • 2002
  • For developing natural presevatives, essential oils of Mentha arvensis L. var. piperascens Malivaud and Agastache rugosa O. Kuntze were analyzed the composition of two oils and experimented on microorganism survival. Main components of Mentha arvensis oil were isomenthol (26.84%) and menthol (25.48%), and those of Agastache rugosa oil were estragole (79.83%) and limonene (4.13%) from GC-MSD analysis. Inhibition activities of Mentha arvensis oil against growth of Escherichia coli O157 : H7 ATCC 43895 and Salmonella typhimurium ATCC 7988 were observed from their clear zone $(9{\sim}14 mm\;&\;9{\sim}13\;mm)$, and that of Agastache rugosa oil were done from the clear zone $(13{\sim}20 mm\;&\;10{\sim}18\;mm)$ by concentration-dependent manner, respectively. In the inhibition test on CFU/ml of the microorganisms, both of the plant essential oils at concentration of 5 and 10 mg showed potent growth inhibition activities from 9 hour of incubation. Analysis using transmission electron microscope on E. coli also showed antimicrobial activities of the oils as deformation of the cell and loss of the intracellular materials.

Radurization of the Microorganisms Contaminated in Beef (우육에 오염된 미생물의 감마선 살균)

  • Yook, Hong-Sun;Kim, Sung;Lee, Kyong-Haeng;Kim, Yeung-Ji;Kim, Jung-Ok;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.212-218
    • /
    • 1999
  • The effects of gamma irradiation (1, 3 and 5 kGy) and packaging methods (air and vacuum) on the growth of microorganisms contaminated in beef was investigated during storage at different temperatures (-20, 4 and $25^{\circ}C$). The initial microbial population of beef was $8.0{\sim}10^2\;CFU/g$ in total aerobic bacteria, $2.0{\times}10^2\;CFU/g$ in total lactic acid bacteria, $8.0{\times}10^1\;CFU/g$ in molds, $6.0{\times}10^2\;CFU/g$ in Pseudomonas sp. and $7.0{\times}10^2\;CFU/g$ in coliforms, respectively. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such dose and subsequent storage at less than $4^{\circ}C$ could ensure hygienic quality prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. The different packaging methods of beef caused negligible changes in the growth of microorganisms during storage.

  • PDF

Symbiobacterium toebii Sp. nov., Commensal Thermophile Isolated from Korean Compost

  • Sung, Moon-Hee;Bae, Jin-Woo;Kim, Joong-Jae;Kim, Kwang;Song, Jae-Jun;Rhee, Sung-Keun;Jeon, Che-Ok;Choi, Yoon-Ho;Hong, Seung-Pyo;Lee, Seung-Goo;Ha, Jae-Suk;Kang, Gwan-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1013-1017
    • /
    • 2003
  • A thermophilic nonspore-forming rod isolated from hay compost in Korea was subjected to a taxonomic study. The microorganism, designated as $SC-1^T$, was identified as a nitrate-reducing and nonmotile bacterium. Although the strain was negatively Gram-stained, a KOH test showed that the strain $SC-1^T$ belonged to a Gram-positive species. Growth was observed between 45 and $70^{\circ}C$. The optimal growth temperature and pH were $60^{\circ}C$ and pH 7.5, respectively. The G+C content of the genomic DNA was 65 mol% and the major quinone types were MK-6 and MK-7. A phylogenetic analysis based on 16S rDNA sequences revealed that the strain $SC-1^T$ was most closely related to Symbiobacterium thermophilum. However, the level of DNA-DNA relatedness between strain $SC-1^T$ and the type strain for Symbiobacterium thermophilum was approximately 30%. Accordingly, on the basis of the phenotypic traits and molecular systematic data, the strain $SC-1^T$ would appear to represent a new species within the genus Symbiobacterium. The type strain for the new species is named $SC-1^T$ ($=KCTC\;0307BP^T;\;DSM15906^T$).

Effects of Gamma Irradiation on Queso Blanco Cheese (퀘소블랑코 치즈의 감마선 조사 처리 효과)

  • Jeong, Seok-Geun;Noh, Young-Bae;Shin, Ji-Hye;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Ju-Woon;Jo, Cheor-Un;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Effects of gamma irradiation on chemical, microbiological, and immunological changes of Queso Blanco cheese were investigated. Although Queso Blanco cheese was made by heat pasteurization at 85$^{\circ}$C and addition of acid without lactic starter culture, total bacterial counts and lactic acid bacterial counts of control cheese were 7.65${\pm}$0.04 and 7.64${\pm}$0.02 log CFU/mL, respectively. It was thought that this microbial growth was due to the incomplete inactivation of raw milk by the heat treatment, resulting into growth during the pressing and the drying process. It demonstrated the possibility that if heat- and acid-resistant hazard microbes are present in raw milk, they can grow during the processes. Lactic acid bacterial counts of the irradiated cheese were 5.45${\pm}$0.02 log CFU/mL at 1kGy, 2.12${\pm}$0.12 log CFU/mL at 2kGy, and not detected at 3kGy or higher doses. The reduction of antigenicity by gamma irradiation was not found. It might be caused by the fact that most whey proteins of milk, a major antigen in milk, were already denaturated by heat process and removed during the draining.

  • PDF