• 제목/요약/키워드: micromechanics

검색결과 147건 처리시간 0.032초

단섬유 금속복합체에서의 복합강화효과에 관한연구 (A Study on the Composite Strengthening Effect in Metal Matrix Composites)

  • 김홍건
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

Vibrational characteristic of FG porous conical shells using Donnell's shell theory

  • Yan, Kai;Zhang, Yao;Cai, Hao;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.249-260
    • /
    • 2020
  • The main purpose of this research work is to investigate the free vibration of conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. To this end, a shell model is developed based on Donnell's theory. To solve the problem, the analytical Galerkin method is employed together with beam mode shapes as weighting functions. Due to importance of boundary conditions upon mechanical behavior of nanostructures, the analysis is carried out for different boundary conditions. The effects of boundary conditions, semi vertex angle, porosity distribution and graphene platelets on the response of conical shell structures are explored. The correctness of the obtained results is checked via comparing with existing data in the literature and good agreement is eventuated. The effectiveness and the accuracy of the present approach have been demonstrated and it is shown that the Donnell's shell theory is efficient, robust and accurate in terms of nanocomposite problems.

Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns

  • Liu, Wen-qi;Liu, Shan-jun;Fan, Ming-yu;Tian, Wei;Wang, Ji-peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.295-306
    • /
    • 2020
  • This paper deals with free vibration analysis of non-uniform column resting on elastic foundations and subjected to follower force at its free end. The internal pores and graphene platelets (GPLs) are distributed in the matrix according to different patterns. The model is proposed with material parameters varying in the thickness of column to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite column, it is crucial to consider porosities inside the material structure.

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성 (Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle)

  • 김윤용;김정수;김희신;하기주;김진근
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.709-716
    • /
    • 2005
  • 이 연구는 국내에서 상용 중인 재료를 이용하여 고인성 섬유복합 모르타르를 개발하고자 함에 목적이 있으며, 고인성 섬유복합 모르타르를 개발하기 위해서는 모르타르 매트릭스의 파괴역학(fracture mechanics)적 특성과 섬유-모르타르 경계 면의 마이크로역학(micromechanics)적 특성을 파악하여야 한다. 특히 시멘트계 재료(cementitious materials)의 역학적 특성에 가장 큰 영향을 미치는 물-시멘트비(water cement ratio)에 대한 연구에 초점을 맞추었으며, 3가지의 물-시멘트비에 대하여 섬유의 인발실험(fiber pullout test)과 모르타르의 쐐기쪼갬실험(wedge splitting test)을 수행하였고 이를 통하여 모르타르 매트릭스와 섬유-매트릭스 경계면(interface)의 역학적인 특성을 파악하였다. 이러한 연구에 의하여 결정된 섬유-매트릭스 경계면의 마이크로역학적 특성과 모르타르의 역학적 특성을 이용하여 물-시멘트비 범위 및 재료의 기본 배합을 제시하였고 또한 마이크로역학과 안정상태 균열이론(steady-state cracking theory)을 배경으로 하여 1축인장 하에서 인장변형률 경화거동을 나타내는 고인성 섬유복합 모르타르를 개발하였다. 개발된 재료는 1축인장 하에서 변형률 경화거동을 나타내었으며, 변형능력은 최대 2.2% 이었다. 이와 같은 높은 변형 능력은 일반 콘크리트(또는 모르타르)의 약 100배에 해당된다. 또한 압축하에서는 압축강도 이후 응력-변형률 곡선이 완만하게 감소하는 연성파괴의 형태를 나타내었으며 28일의 압축강도는 보통강도 콘크리트의 강도에 해당되는 26MPa, 34MPa인 것으로 측정되었다.

미시역학적 파손이론을 이용한 복합재 적층판의 피로수명 예측 (Prediction of Fatigue life of Composite Laminates using Micromechanics of Failure)

  • 진교국;하성규;김재혁;한훈희
    • Composites Research
    • /
    • 제24권1호
    • /
    • pp.10-16
    • /
    • 2011
  • 복합재 적층판의 피로수명을 평가하는 것은 여러 가지 재료와 섬유적층각에 따라 수많은 인증실험이 요구된다. 본 논문에서는 미시역학적 파손이론을 이용하여 복합재의 구성재료인 섬유, 기지 및 섬유/기지 경계면의 피로수명 예측를 통해 복합재 적층판의 피로수명 평가를 할 수 있는 방법을 제시하였다. 기지는 다축응력상태을 고려할 수 있는 일반적인 등방성 재료의 등가응력파손식을 이용하였고, 섬유는 이방성 재료이지만 섬유방향의 응력이 주요하므로 섬유방향의 응력만 고려한 최대응력 파손식을 사용하였다. 섬유/기지 경계면에서는 임계단면파손식을 사용하였고, 경계면의 피로강도가 크다고 가정하여 경계면에서의 피로파손는 무시하였다. 인장과 압축강도가 다른 재료의 평균응력효과를 고려할 수 있도록 수정된 Goodman 식을 이용하였다. 순수 기지의 피로실험 데이터를 기반으로 미시역학적 파손이론을 이용하여 단일 플라이와 복합재 적층판인 UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S와 TX[$0^{\circ}/{\pm}45^{\circ}$]S의 피로수명을 예측해 보았고, 실험 데이터와 잘 일치함을 확인하였다.

금속복합재료의 미세구조역학 모델을 이용한 수치해석적 연구 (A Numerical Study Using Micromechanics Model for Metal Matrix Composites)

  • 김홍건;장성호;장대성;정수경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1994년도 추계 학술발표 강연 및 논문 개요집
    • /
    • pp.133-136
    • /
    • 1994
  • A microcechanical analysis based on the single fiber model has studied in the standpoint of stress-strain hysteresis response. A comparative study of constraint and unconstraint effects ha been taken into account to investigate includes the stress grouping technique to evaluate the domain-based field quantities. Results indicated that the development of significant fiber stresses both for the tensile and compressive loading, due to the constraint effects, provides an important contribution to the composited strengthening

  • PDF

섬유보강 복합체의 균열면 해석을 위한 수정 미세역학 모델 (Modified Micro-Mechanical Fiber Bridging Model for Crack Plane of Fiber Rreinforced Cementitious Composite)

  • 신경준;박종범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.365-368
    • /
    • 2006
  • In this paper, the post cracking stress-crack width relationship of the composite is studied from a micromechanics points of view. Cook-Gordon debonding effect is studied by more refined method with considering of chemical friction of fiber interface. As a result, fiber with pre-debonding length retards stress development and shows more wide crack width for the same force level. longer pre-debonding length and lower pre-debonding bond strength results in lower full-debonding force, but same crack width.

  • PDF

DLC코팅 마모면에 대한 원자력 현미경을 이용한 고찰 (An Investigation of Worn DLC Coatings Using Atomic Force Microscopy)

  • 안효석;조경만
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.138-143
    • /
    • 2002
  • Abstract - Tribofilms formed on won surface protect the DLC coating surface and decrease the fiction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic farce microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.