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Abstract

An overall feature to simulate composite behavior
and to predict closed solution has been performed for
the application to the stress analysis in a discontinuous
composite solid. To obtain the internal field quantities
of composite, the micromechanics analysis and finite
element analysis (FEA) were implemented. For the
numerical illustration, an aligned axisymmetric single
fiber model has been employed to assess field
quantities. Further, a micromechanics model to describe
the elastic behavior of fiber or whisker reinforced metal
matrix composites has been developed and the stress
between
investigated using the modified shear lag model with

concentrations reinforcements were
the comparison of finite element analysis (FEA). The
rationale is based on the replacement of the matrix
between fiber ends with the fictitious fiber to maintain
the compatibility of displacement and traction. It was
found that the new model gives a good agreement with
FEA results in the small fiber aspect ratio regime as
well as that in the large fiber aspect ratio regime.

It was found that the proposed simulation
methodology for stress analysis is applicable to the
complicated inhomogeneous solid for the investigation
of micromechanical behavior.

1. Introduction

Composites, man-made material in which two or
more constituents are combined to create a material
with properties different from that of either constituent,
have excited for thousands of years. The objective of
fabricating composites is to improve mechanical
preperties such as strength, stiffness, thoughness and
high temperature performance. Therefore, it is natural
to study together the composite that have a common
strengthening mechanism. In composites in nature,
loads are not directly applied on the fibers but are
applied to the matrix material and transferred to the
fibers through the fiber ends and also through the
cylindrical surface of the fiber near the ends.

When the length of a fiber is much greater than the
length over which the transfer of stress takes place,
the end effects can he neglected and the fiber may be
considered to be continuous.” In the case of short
fiber composites, the end effects cannot be neglected
and the composite properties are a function of fiber
length. Furthermore, a significant stress concentration
occurs between fibers.

Therefore, an correctly predictable appropriate
theory is needed to evaluate the local and global
properties for short fiber regime as well as long fiber
regime. Larly studies concerning variation of stresses
along the length of a fiber were performed by Cox'®
and Outwater.” Probably the most often quoted theory
of stress transfer is the shear lag (SL) analysis applied
by Rosen,"' who modified an earlier analysis of Dow.”

There have been limited previous attempts to
modify the SL approach. Muki and Sternbergm) and
Stermnberg and Muki’”
refined manner using integro-differential equations and
have calculated the local stresses inside the fiber.

However, this model assumed that the fiber center

used the SL approach in a more

stress is given by the rule of mixture equation
applicable strictly only to the long fiber case.
Furthermore, Stermberg’s results are not able to be
applied to obtain expressions for the matrix stress
intensification in the fiber end region which provides a
significant contribution to the elastic modulus. On the
other hand, Nardone and Prewo™ and Nardone®™
attempted to modify the SL model by assuming that
the fiber end stress was equal to the matrix vyield
stress and further that the matrix average stress was
also equal to the matrix yield stress. This made
possible an approximate estimate of the macroscopic
composite yield strength increase, but this approach is
clearly not applicable to the purely elastic regime
wherein the elastic modulus increase is to be
calculated. Taya and Arsenault'® also attempted to
modify the original SL approach by assuming that the
fiber end stress was equal to the average matrix
stress, ie., the stress concentration at the fiber ends
were ignored.
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Recently, Kim and Nair""' modified the SL analysis
by using FEA to provide the fiber end normal stresses.
Their results of the predicted internal stress and elastic
modulus increases in short fiber reinforced MMCs
showed a good agreement with FEA resuits as well as
experimental data. While their work demonstrates that
SL solutions have the applicability to the short fiber
composite provided fiber end effects are accounted for,
the model does not calculate the fiber end stresses
from first principles and relies instead on FEA.

More recently, Kim"? developed the SL closed
form solution called MSL (Modified Shear Lag) model
to provide the fiber end normal stresses. His approach
involved replacing the matrix region between fiber ends
with a fictitious fiber having the same elastic
properties as the matrix and developing conventional
SL solutions for both the real and fictitious fiber.

The purpose of this paper is to provide a rigorous
evaluation of stress concentrations near discontinuity
between fibers or whiskers using MSIL. model. An
axisymmetric FEA model has been implemented to
verify the predictions of the stress concentration
effects. It was found that the MSL model is not only a
correct prediction of the fiber stress increases in the
small aspect ratio regime when compared to FEA
results, but is also able to correctly predict the stress
concentration effects in the matrix.

2. Modeling Procedure

Fig. 1 shows an overall procedure for composite
analysis. From the given information, such as
geometric and material properties, a designer can
choose the analysis types and RVE depending on
geometric and material characteristics. For an
appropriate  RVE, the boundary conditions should be
considered rigorously. In the FEA preprocessing, it is
quite efficient to set an coarse mesh in order to find
out the correctness of overall results.

A micromechanical model is described as follows.
The discontinuous short fibers are considered to be
uniaxially aligned with the stress applied in the axial
direction of the fibers. The fiber/matrix bond is
assumed to be large and no debonding is allowed in
keeping with the actual situation in many MMCs.""
Further, no plastic yielding is allowed, that is, both
matrix and fiber deform in a purely elastic manner.
This rationale is an attempt to understand the initial
stage of composite behavior. The conceptual approach
of MSL model is shown in Fig. 1.

The conventional Sl model is based on the
concept that fiber tensile stresses are governed by an
interfacial shear stress parallel to the fiber surface. In
the MSL model, the short fibers are also considered to
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be uniaxially aligned with the stress applied in the
axial direction of the fibers and the displacement and
traction compatibility conditions are imposed to take the
fiber end effect into account.

The micromechanical model to describe a short
fiber reinforced composite is a single fiber model as
shown in Fig. 2. In this model, a uniform fiber
distribution with an end gap value egual to transverse
spacing between fibers was selected. The fibers were
assumed as uniaxially aligned with no fiber/ matrix
debonding allowed for, in keeping with the actual
situation in many MMCs (Arsenault and Pande, 1984).

Basic Information
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Properties, etc.

I

Designer’s Choice
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Select Analysis Type
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Figure 1 Overall computational Procedure for composite
design.
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Figure 2 Composite RVE of a discontinuous composite

As shown in Fig. 3, the actual, or real, fiber has
radius r, and length ZL. On either end of the fiber is
postulated a fictitious fiber also of diameter Zr but a
length g=half the spacing between fiber ends in the
composite. The outer surface of the unit cell can be
said to have a hexagonal contour, however, the exact
shape is not critical in this model. It is treated that the
unit cell is an equivalent cylinder with radius 2. The
spatial variable for the real fiber is x, with the
coordinate origin at the fiber center, whereas the
spatial variable for the fictitious fiber is x* with the
coordinate origin at the fiber end.

In Fig. 3, different origins are necessary because,
as to be shown, the governing differential equations in
the region of the real and fictitious fiber are different
and consequently there can be no overlap of the x and
x" domains. The two domains are in contact at x=L. or
x"=0, at which point proper boundary conditions need to
be applied. Note, in the following, that all variables
associated with the fictitious fiber will be denoted with
a superscript = At the far end of the unit cell, that is
at the surface x =g, is applied a uniform constant
composite strain &.
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Fig. 3 The schematic of composite RVE containing
fictitious whisker or fiber.

Through govermning equations of the real and
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fictitious fiber, the solutions'™ are given by :

0,= E; e. + Asinh (nx/7) + Bcosh (nx/7) (1)
o0y=Ee.+A"sinh(n"x"/r)+ B cosh(n"x"/ »(2

where
A= 0 (3)
— ( Em_E/) Ec (4)
cosh(#ns) + (#n/n")sinh (ns) coth (%" s")
B" = —B (n/x") sinh (ns) coth (»"s") (5)
A® = —B' tanh (#"s" (6)
nt = En (D

E;,(1+v,) In(R/»)

1
a0 Wk 8)

Here, £ and E; are Young's moduli of the matrix and
fiber, respectively, Vs is the volume fraction of fiber, &.
1s the far field composite strain and Vn is the Poisson’s
ratio of the matrix. As mentioned above, I? is the unit
cell radius, s (=1./7) is fiber aspect ratio and s~ (=g/r)
is the aspect ratio of fictitious fiber.

Hence, the f{iber maximum stress Om can be
obtained by setting x=0 in equation (1) :

Opmy = E/ ¢ + B (9)

In the same fashion, the fiber end stress 0; can also be
ohtained hy setting x'=0 in equation (2), namely :

o = E,e. + B (10)

Here, B' can bhe described as a function of composite
strain. Thus, we have

o= (E. + C)e, 1D

where

( E,—E,;)(n/n")sinh(ns) coth(n"s")
cosh (ns) + (n/%")sinh (#s) coth(#"s")

(12)

Equation (11) represents that the interfacial stress is
proportional to the composite strain as presumed. On
the above basis, the stress concentration factor K can
be calculated in the closed form as follows.



o;
K = E,e.
= 1+ 5 (13)

On the other hand, FEA Model were generated for
the verification of the present model. Fig. 4 describes
the relevant meshes.
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Fig. 4 Axisymmetric FEA meshes of RVE at s=4 in
case of (a) Quasi-infinite matrix (Vy = 0.5%)
and (b) Finite Concentration (V, = 20%).

3. Results and Discussion

Material properties selected are for Al 2124 as
matrix and SiC whisker as reinforcement. For this
system, typical values are Em=67.2GPa, um=0.33 for the
matrix and E=480GPa, v=0.17 for the fiber.*"

The FEA computations were performed provided that
the fiber or whisker distribution is perfectly uniform.
The RVEs were selected for V=20% as well as
Vi=0.5%. The configuration is similar to that used
previously for a uniform distribution of fiber with an
end gap value equal to transverse spacing between
fibers."® In other words, g=R-r. For the side wall
compatibility, the constraint conditions were imposed by
requiring that the longitudinal cell boundary and the
cell end are undistorted during deformation as

implemented in the previous work. "

The analytical
result of the present model (MSL) is compared to the
FEA results as well as to the prediction of the SL

model.

The axial tensile stress in the fiber and matrix end
region (fictitious fiber) at 0.19% composite strain is
given in Fig. 5 for the case of a single fiber in a
quasi-infinite matrix (V; = 05%). For this case, r = 1,
L=4¢g=10 s=4s =10, R/r =156, n =02281, n’
= 0.6097. The analytical result of this model (MSL) is
compared to the FEA results as well as to the
prediction of the SL model. As shown in Fig. 5, the
fiber stress in the SL model drops to zero as the fiber
end region is approached. Further, the tensile stress in
the matrix end region in the SL. model is assumed
constant throughout the gap region and equal to the
average matrix stress (=En&.). On the other hand, in
the MSL model the fiber stresses are significantly
higher than that in the SL model. These fiber stresses
drop off to a finite interfacial value g; at the fiber end.
The tensile stress in the matrix end region is not
constant but decreases from the value at the fiber and
approached the SL. model predictions at large distances
from the fiber end. Further, note that the shape of the
fiber tensile stress curve in the MSL model is not the
same as that in the SL model because of the different
constant values in the SL eguation solutions.

For finite fiber concentrations (V, = 20%), the
results are shown in Fig. 6. Numerical values were set
asr=1L=4g=15s=4,5s =1 R/ir =2 n-=
0.3897 and n° = 10415. Note from Fig. 6, that the
matrnx stresses in the end gap region are throughout
larger than the average matrix stress, predicted by the
SL model. An interfacial value o is also larger than
that for the V; = 0.005 case. Thus far, fiber end gap
stresses and 0; are increased as the fibers come close
together along the axial direction.

The tensile resuits of the MSL model is in both
qualitative and quantitative agreement with the FEA
results, both for the single fiber (Fig. 5) and finite
fiber concentration cases (Fig. 6). However, note that
the maximum stress predicted at the fiber center by
the MSIL. model in Fig. 6 is somewhat higher than the
FEA result. This is due to the In(R/r) term in
equation (7) and (8). The SL and MSIL model is
clearly invalid as R—oo and, in this sense, is similar to
the equation for the line tension of dislocations in
metallic alloys. At more realistic fiber concentrations,
the FEA and MSL predictions are in better agreement
as shown in Fig. 6. The MSL model is also not
applicable in the limit as R—r, for, in this case, as
equation (7) and equation (8) show, the fiber stresses
show a singularity.

Interfacial shear stresses at 0.1% composite strain
are depicted in Fig. 7 and Fig. 8 for Vy = 0.005 and V;
= 0.2, respectively. For the case of the single fiber in
an quasi-infinite matrix (V; = 0.005), Fig. 7 indicates
that the trends in shear stress show good agreement
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Fig. 5 Real and fictitious fiber axial stress
distributions as predicted by SL, MSL and
FEA at & = 0.1% in case of V; = 0.5%.
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Fig. 6 Real and fictitious fiber axial stress distributions
as predicted by SL, MSL and FEA at & =
0.1% in case of Vy = 20%.
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Fig. 7 Interfacial shear stress distributions as predicted
by SL, MSL and FEA at &£=0.1% in case of
Vi=0.5%.

between the MSL model and FEA predictions. Note,
however, that the SI. model does not provide any shear
stress values in the end gap region. The shear stresses
at the fiber/matrix interface near the fiber end is
somewhat underestimated in the MSL model, again due
to the In(R/r) term as explained earlier. The predicted
shear stresses in the gap region by the MSL model
agree excellently with calculated FEA results. For the
more realistic case of V; = 0.2, Fig. 8, there is even
better agreement between the FEA shear stress results
and that of the MSL model over both the fiber/matrix
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Fig. 8 Interfacial shear stress distributions as predicted
by SL, MSL and FEA at &=0.1% in case of
Vi=20%.

interface and the matrix gap regions. If local plastic
yielding is driven by a Tresca criterion, Fig. 7 and 8

predict that plasticity would progress both into the gap
region from the fiber end due to the high shear
stresses there as well as towards the fiber center from
the fiber corners because of the high shear stresses at
the fiber/matrix interfaces near the fiber end.
Consequently, plastic yielding of the composite would
commence at stresses lower than the macroscopic
matrix yield stress. These shear stress values can then
be used to estimate the approximate size of locally
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yielded zones around the short fiber ends.

Again, MSL predictions agree well with FEA
results. Accordingly, it is found that the present model
can accurately describe the stress concentration factors,
which is an important parameter to investigate the
onset of yielding in the composite.

4. Conclusions

A simulation methodology for stress analysis was
investigated to predict the internal quantities. It was
found that the local deformation behavior in composite
can be simulated depending on the designer’s choice.
The numerical examples show that the modified shear
lag model can be implemented well to evaluate the
stress concentration factors for the case of different
modulus ratio and end gap size. Those match with
FEA results in a good manner. It was found that the
shear lag concept is also useful and simple enough to
predict and stress concentration factors.
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