• Title/Summary/Keyword: micromachining technology

Search Result 232, Processing Time 0.027 seconds

Fabrication of Micromirror Array with Vertical Spring Structure

  • Shin, Jong-Woo;Kim, Yong-Kweon;Choi, Bum-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.416-418
    • /
    • 1996
  • A $50{\times}50{\mu}m^2$ aluminum micromirror array is fabricated using surface micromachining technology. $50{\times}50$ micromirrors are arrayed two dimensionally. The micromirror plate is supported by a vertical spring structure that is placed underneath the mirror plate. When the mirror plates reflect a light, the micromirror array un have large effective reflecting area. Fabrication of vertical spring uses only one mask and shadow evaporation process.

  • PDF

진공용 나노 스테이지 개발을 위한 고찰

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.223-228
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modern products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few $\mu\;\textrm{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1\times10^{-7}$ torr. This paper presents the concept of nano stages and the discussion of the material treatment for ultra high vacuum.

  • PDF

Development of Nano Stage for Ultra High Vacuum (진공용 나노스테이지 개발)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.472-477
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modem products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of mastless fabrication. Therefore, the application of focused ion beam(FIB) technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}{\textrm}{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and l0nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about 1$\times$10$^{-5}$ pa. This paper presents the concept of nano stages and the discussion of the material treatment for ultra tush vacuum.

  • PDF

Development of a miniaturized machine tool for machining a micro/meso scale structure (마이크로 및 메조 가공을 위한 소형공작기계 개발)

  • 박성령;이재하;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1907-1910
    • /
    • 2003
  • Miniaturized machine tool can be used to produce 3D features based on CNC and PC-NC technology in the micro/meso scale. Wide applications of CNC technology are developed and there are lots of know-hows in the cutting process and their CNC application. It helps micro/meso scale structure to machine components, which can be used directly for practical applications. In the present research, as the machine tool is miniaturized, the manufacturing machine tools costs less when compared to the equipment used in other micromachining technologies. Moreover, with advancement of micro tool technology, the cutting process can be used to produce micro/meso scale parts. In conclusion, the proposed system can reduce the cost by utilizing the current machining technology, and as a result, complex micro/meso parts can be produced efficiently with high productivity.

  • PDF

Spectral Properties of THz-Periodic Metallic Structures

  • Kang, Chul;Kee, Chul-Sik;Sohn, Ik-Bu;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.196-199
    • /
    • 2008
  • We have investigated spectral properties of the periodic arrays of aluminum rods and holes on papers using the terahertz time-domain spectroscopy. The size of a rod(hole) is $600{\mu}m{\times}100{\mu}m$ and the spacing is $300{\mu}m$. The samples were fabricated by a femtosecond laser micromachining system. The periodic arrays of aluminum rods exhibit high reflection around 0.25 THz when the polarization of the THz pulse is parallel to the long axis of the rod, whereas the periodic arrays of holes exhibit high transmission around 0.25 THz when the polarization of the THz pulse is perpendicular to the long axis of the hole.

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee, Jong-Kwang;Lee, Dae-Hoon;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1280-1285
    • /
    • 2004
  • Microsystem technology has been applied to space technology and became one of the enabling technology by which low cost and high efficiency are achievable. Micro propulsion system is a key technology in the miniature satellite because micro satellite requires very small and precise thrust force for maneuvering and attitude control. In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

  • PDF

Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool (다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성)

  • Kim, Seon-Ah;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF

The fabrication of micro mass flow sensor by Micro-machining Technology (Micromachining 기술을 이용한 micro mass flow sensor의 제작)

  • Eoh, Soo-Hae;Choi, Se-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.481-485
    • /
    • 1987
  • The fabrication of a micro mass flow sensor on a silicon chip by means of micro-machining technology is described on this paper. The operation of micro mass flow sensor is based on the heat transfer from a heated chip to a fluid. The temperature differences on the chip is a measure for the flow velocity in a plane parallel with the chip surface. An anisotropic etching technigue was used for the formation of the V-type groove in this fabrication. The micro mass flow sensor is made up of two main parts ; A thin glass plate embodying the connecting parts and mass flow sensor parts in silicon chip. This sensor have a very small size and a neglible dead space. Micro mass flow sensor can fabricate on silicon chip by micro machining technology too.

  • PDF

Design of the 60 GHz Single Balanced Mixer Integrated with 180° Hybrid Coupler Using MEMS Technology (HEMS 기술을 이용한 180° 하이브리드 결합기가 집적된 단일 평형 혼합기의 설계 및 제작에 관한 연구)

  • Kim Sung-Chan;Lim Byeong-Ok;Baek Tae-Jong;Ko Baek-Seok;An Dan;Kim Soon-Koo;Shin Dong-Hoon;Rhee Jin-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.753-759
    • /
    • 2005
  • In this paper, we have developed a new type of single balanced mixer with the RF MEMS $180^{\circ}$ hybrid coupler using surface micromachining technology. The $180^{\circ}$ hybrid coupler in this mixer is composed of the dielectric-supported air gapped microstriplines(DAMLs) which have signal line with $10{\mu}m$ height to reduce substrate dielectric loss and dielectric posts with size of $20{\mu}m{\times}20{\mu}m$ to elevate the signal line on air with stability At LO power of 7.2 dBm, the conversion loss was 15.5 dB f3r RF frequency or 57 GHz and RF power of -15 dBm. Also, we obtained the good RF to LO isolation of -40 dB at LO frequency of 58 GHz and LO power of 7.2 dBm. The main advantage of this type of mixer is that we are able to reduce the size of the chips due to integrating the MEMS passive components.

MEMS for Heterogeneous Integration of Devices and Functionality

  • Fujita, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Future MEMS systems will be composed of larger varieties of devices with very different functionality such as electronics, mechanics, optics and bio-chemistry. Integration technology of heterogeneous devices must be developed. This article first deals with the current development trend of new fabrication technologies; those include self-assembling of parts over a large area, wafer-scale encapsulation by wafer-bonding, nano imprinting, and roll-to-roll printing. In the latter half of the article, the concept towards the heterogeneous integration of devices and functionality into micro/nano systems is described. The key idea is to combine the conventional top-down technologies and the novel bottom-up technologies for building nano systems. A simple example is the carbon nano tube interconnection that is grown in the via-hole of a VLSI chip. In the laboratory level, the position-specific self-assembly of nano parts on a DNA template was demonstrated through hybridization of probe DNA segments attached to the parts. Also, bio molecular motors were incorporated in a micro fluidic system and utilized as a nano actuator for transporting objects in the channel.