DOI QR코드

DOI QR Code

Spectral Properties of THz-Periodic Metallic Structures

  • Kang, Chul (Advanced Photonics Research Institute, Gwangju Institute Science and Technology) ;
  • Kee, Chul-Sik (Advanced Photonics Research Institute, Gwangju Institute Science and Technology) ;
  • Sohn, Ik-Bu (Advanced Photonics Research Institute, Gwangju Institute Science and Technology) ;
  • Lee, Jong-Min (Advanced Photonics Research Institute, Gwangju Institute Science and Technology)
  • Received : 2008.08.19
  • Accepted : 2008.09.18
  • Published : 2008.09.25

Abstract

We have investigated spectral properties of the periodic arrays of aluminum rods and holes on papers using the terahertz time-domain spectroscopy. The size of a rod(hole) is $600{\mu}m{\times}100{\mu}m$ and the spacing is $300{\mu}m$. The samples were fabricated by a femtosecond laser micromachining system. The periodic arrays of aluminum rods exhibit high reflection around 0.25 THz when the polarization of the THz pulse is parallel to the long axis of the rod, whereas the periodic arrays of holes exhibit high transmission around 0.25 THz when the polarization of the THz pulse is perpendicular to the long axis of the hole.

Keywords

References

  1. F. J. Garcia de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Modern Phys ., vol 79, no. 4, pp. 1267-1290, 2007 https://doi.org/10.1103/RevModPhys.79.1267
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 301, pp. 667-669, 1997
  3. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B, vol. 58, no. 11, pp. 6779-6782, 1998 https://doi.org/10.1103/PhysRevB.58.6779
  4. L. Salomon, F. Grillot, A. V. Zayats, and F. Fronel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett., vol. 86, no. 6, pp. 1110-1113, 2001 https://doi.org/10.1103/PhysRevLett.86.1110
  5. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes", Phys. Rev. Lett., vol. 92, no. 18, pp. 183901-1-183901-4, 2004 https://doi.org/10.1103/PhysRevLett.92.183901
  6. J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microw. Theory and Tech., vol. 47, no. 11, pp. 2075-2084, 1999 https://doi.org/10.1109/22.798002
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett., vol. 76, no. 25, pp. 4773-4776, 1996 https://doi.org/10.1103/PhysRevLett.76.4773
  8. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D Wire Mesh Photonic Crystals," Phys. Rev. Lett., vol. 76, no. 14, pp. 2480-2483, 1996 https://doi.org/10.1103/PhysRevLett.76.2480
  9. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett., vol. 84, no. 18, pp. 4184-4187, 2000 https://doi.org/10.1103/PhysRevLett.84.4184
  10. K. Sakai, in the "Terahertz optoelectronics," Topics in Applied Physics, vol. 97, Springer, 2005 https://doi.org/10.1007/b80319
  11. S. J. Oh, C. Kang, I. H. Maeng, J.-H. Son, N. K. Cho, J. D. Song, W. J. Choi, W.-J. Cho, and J. I. Lee, "Measurement of carrier concentration captured by InAs/GaAs quantum dots using terahertz time-domain spectroscopy," Appl. Phys. Lett., vol. 90, no. 13, pp. 131906-1-131906-3, 2007 https://doi.org/10.1063/1.2716859
  12. Kang, I. H. Maeng, S. J. Oh, J. H. Son, T. I. Jeon, K. H. An, S. C. Lim, and Y. H. Lee, "Frequency-dependent optical constants and conductivities of hydrogenfunctionalized single-walled carbon nanotubes," Appl. Phys. Lett., vol. 87, no. 4, pp. 041908-1-041908-3, 2005 https://doi.org/10.1063/1.1999015
  13. E. Pickwell and V. P. Wallace, "Biomedical applications of terahertz technology," J. Phys. D: Appl. Phys., vol. 39, no. 17, pp. R301-R310, 2006 https://doi.org/10.1088/0022-3727/39/17/R01
  14. C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, "Detection of Concealed Explosives at a Distance Using Terahertz Technology," Proc. IEEE, vol. 95, no. 8, pp. 1559-1565, 2007 https://doi.org/10.1109/JPROC.2007.900329
  15. J. Han, X. Lu, and W. Zhang, "Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces:The effect of a dielectric layer," J. Appl. Phys., vol. 103, no. 13, pp. 033108-1-033108-4, 2008 https://doi.org/10.1063/1.2837090
  16. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett., vol. 99, no. 13, pp. 137401-1-137401-4, 2007 https://doi.org/10.1103/PhysRevLett.99.137401
  17. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Ch. Lienau, Q-Han Park, P. C. M. Planken, and D. S. Kim, "Shape Resonance Omni-directional Terahertz Filters with Near-unity Transmittance," Opt. Exp., vol. 14, no. 3, pp. 1253-1259, 2006 https://doi.org/10.1364/OE.14.001253
  18. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures," Opt. Exp, vol. 16, no.10, pp.7407-7417, 2008 https://doi.org/10.1364/OE.16.007407
  19. M. Born and E. Wolf, "Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light," (Cambridge University Press, Cambridge, England, 1999.)
  20. K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, "THz radiation from InAs induced by carrier diffusion and drift," Phys. Rev. B, vol. 73, pp. 155330-155334, 2006 https://doi.org/10.1103/PhysRevB.73.155330

Cited by

  1. Terahertz Frequency Spreading Filter via One-dimensional Dielectric Multilayer Structures vol.13, pp.3, 2009, https://doi.org/10.3807/JOSK.2009.13.3.398
  2. Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy vol.17, pp.5, 2013, https://doi.org/10.3807/JOSK.2013.17.5.454
  3. Study on the Characteristics of Electron Beam Dependent with the Structure of Wiggler in the Miniaturized Free Electron Laser Module vol.12, pp.3, 2011, https://doi.org/10.5762/KAIS.2011.12.3.1319
  4. Terahertz Wave Transmission Properties of Metallic Periodic Structures Printed on a Photo-paper vol.14, pp.3, 2010, https://doi.org/10.3807/JOSK.2010.14.3.282
  5. Development and Evaluation of an Electron Beam Source for Microscopy and Its Applications vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.127
  6. Coherently controlled spin precession in canted antiferromagnetic YFeO3using terahertz magnetic field vol.7, pp.9, 2014, https://doi.org/10.7567/APEX.7.093007
  7. Investigation on terahertz parametric oscillators using quasi-phase-matching GaP crystal vol.29, pp.01, 2015, https://doi.org/10.1142/S0217984914502583
  8. Investigation on terahertz parametric oscillators using GaP crystal with a noncollinear phase-matching scheme vol.62, pp.4, 2015, https://doi.org/10.1080/09500340.2014.976599
  9. Frequency Tuning Characteristics of a THz-wave Parametric Oscillator vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.097