• Title/Summary/Keyword: micromachining technology

Search Result 232, Processing Time 0.029 seconds

A study on a Glucose Sensor Fabricated by Micromachining (마이크로머시닝 기술을 이용하여 제작한 포도당 센서에 관한 연구)

  • 최석민;노일호;양성준;김창교;유홍진;박효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.451-454
    • /
    • 2001
  • In this study, a micro-glucose sensor was fabricated by micromachining technology and its sensing characteristics were investigated. The 7740 pyrex glass was used as the bottom substrate and anisotropically etched silicon wafer was used as the top substrate. The size of the fabricated microchip is 1.58${\times}$1.58mm$^2$. It is shown that output current exhibits a linear change according to glucose concentration (100 mM ∼ 300 mM). It is also shown that the response time for glucose was within 240 sec. It was followed by a saturation trend within 50 sec. The g1ucose sensor with Fc$\^$+/ exhibits relatively higher sensitivity than that without Fc$\sub$+/ for output current.

  • PDF

Film Bulk Acoustic Wave Resonator for Bandpass Filter (밴드패스필터 구현을 위한 압전박막공진기 제작)

  • 김인태;박윤권;이시형;이윤희;이전국;김남수;주병권
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.597-600
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size and low cost, high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible suspended FBAR using surface micromachining. Membrane is composed $Si_3N_4SiO_2Si _3N_4$ multi layer and air gap is about 50${\mu}{\textrm}{m}$. Firstly, We perform one dimensional simulation applying transmission line theorem to verify resonance characteristic of the FBAR. Process of the FBAR is used MEMS technology. Fabricated FBAR resonate at 2.4GHz, $K^2_{eff}$ and Q are 4.1% and 1100.

Polymer Micromachined Flexible Tactile Sensor for Three-Axial Loads Detection

  • Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.130-133
    • /
    • 2010
  • A flexible three-axial tactile sensor was fabricated on Kapton polyimide film using polymer micromachining technology. Nichrome (Ni:Cr = 8:2) strain gauges were positioned on an etched membrane to detect normal and shear loads. The optimal positions of strain gauges were determined through strain distribution from finite element analysis. The sensor was evaluated by applying normal and shear loads from 0 N to 0.8 N using an evaluation system. Sensitivity of the tactile sensor to normal and shear loads was about 206.6 mV/N and 70.1 mV/N, respectively. The sensor showed good linearity, and its determination coefficient ($R^2$) was about 0.982. The developed sensor can be applied in a curved or compliant surface that requires slip detection and flexibility, such as a robotic fingertip.

A study of electrochemical micromachining with voltage pulses (미세 펄스 전압을 이용한 마이크로 전해가공에 관한 연구)

  • 조창래;백승엽;이은상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.356-361
    • /
    • 2003
  • Electrochemical micromachining which is not normally considered as a precision process is presented in this paper. The application of voltage Pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with micrometer precision. In this paper tool-electrodes($5\mu\textrm{m}$ in diameter, 1mm in length) are developed by electrochemical micromaching and micro holes are manufactured using this tool-electrodes we developed already. Micro holes are achieved the accuracy below $50\mu\textrm{m}$ in diameter using ultrashort voltage pulses(0.1-5$\mu\textrm{s}$).

  • PDF

Machining of the Inject Mould for Forming the Dot Pattern of LGP of TFT-LCD (TFT-LCD의 도광판 패턴 사출성형용 금형가공)

  • 박동삼;최영현;하민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1215-1219
    • /
    • 2003
  • Light Guide Panel(LGP) is a key part of backlight unit(BLU) which transforms line-light of lamp to surface-light. Dot pattern is formed on the injected LGP surface by screen printing. This dot pattern is composed of several ten thousands micro dots of diameter 150-180$\mu\textrm{m}$ or so. The dot patterning by screen printing causes low productivity and low performance of TFT-LCD. This research develops the micromachining technology for LGP mould which could form micro dot pattern by injection molding, removing the existing screen printing process.

  • PDF

Characteristics of Poly-Oxide of New Sacrificial Layer for Micromachining (마이크로머시닝을 위한 새로운 희생층인 다결정-산화막의 특성)

  • Hong, Soon-Kwan;Kim, Chul-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 1996
  • Considering that polycrystalline silicon, a structural material of the micromachining, is affected by a sacrificial oxide layer, the poly-oxide obtained by the thermal oxidation of polycrystalline silicon is newly proposed and estimated as the sacrificial oxide layer. The grain size of the polycrystalline silicon grown on the poly-oxide is larger than that of poly crystalline silicon grown on the conventional sacrificial oxide layer. As a result of XRD, increase of (111) textures and formation of additional (220) textures are observed on the polycrystaIline silicon deposited on the poly-oxide. Also, the polycrystalline silicon grown on the poly-oxide represents small and uniform stress.

  • PDF

Anisotropic Etching of Silicon in Aqueous TMAH/IPA Solutions (수용성 TMAH/IPA 용액의 실리콘 이방성 식각)

  • 박진성;송승환;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.334-337
    • /
    • 1996
  • Si anisotropic etching is a key technology for micromachining. The main advantages of tetramethyl ammonium hydroxide (TMAH)-based solution are their full compatibility with IC process. In this work the anisotropic etching of single crystal Si in a TMAH (($CH_3$)$_4$NOH) based solution was studied. The influence of the addition of IPA to TMAH solution on their etching characteristics was also presented. The crystal planes bounding the etch front and their etch rates were determined as a function of temperature, crystal orientation, and etchant concentration. The etch rates of (100) oriented Si crystal planes decreased linearly with increasing the IPA concentration, The etched (100) planes were covered by Pyramidal-shaped hillocks below 15 wt.%, but very smooth surfaces were obtained above 20 wt.%. The addition of IPA to TMAH solution leads to smoother surfaces of sidewalls etched planes.

  • PDF

A Two-Step Micromirror for Low Voltage Operation

  • Hwang Yong-Ha;Han Seungoh;Lee Byung-Kab;Kim Jae-Soon;Pak James Jungho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.270-275
    • /
    • 2005
  • In order for the application of the in-vivo endoscopic biopsy, a micromirror which can be driven at a low voltage is required. In this paper, a two-step micromirror composed of bottom electrodes, moving plate and top mirror plate is proposed. Because an electrical wiring of two plates are separated, they can be actuated separately. Therefore, an intermediate moving plate plays an important role in reducing the driving voltage in half. The designed device was fabricated by the surface micromachining. Maximum rotation angle of $6.3^{\circ}$ was obtained by applying DC 48V, while a conventional one-step mirror pulled down at DC 120V. The designed structure can be used in microphotonic applications requiring low driving voltage.

Present and Future Research Trend of Modern Micromachining Technology (최근의 마이크로머시닝 기술의 연구상황과 전망)

  • 등전박지
    • Journal of the KSME
    • /
    • v.33 no.6
    • /
    • pp.484-498
    • /
    • 1993
  • 마이크로머신의 기술은 빠른 속도로 진보되고 있으며 광학관계를 비롯해서 생명, 유체, 표면과학 등에의 응용도 유망하고 응용 제품이 만들어지는 날도 가까워지고 있다. 여기서 소개한 반도체 기술을 바탕으로 한 접근 방법 외에 정밀기계 가공을 이용하여 mm 크기의 기계를 만들거나, 분자기계를 유전자공학의 수법으로 만들려고 하는 시도 등 여러 가지 접근 방법도 행해지고 있 으며 앞으로의 발전이 한층더 기대된다.

  • PDF