• 제목/요약/키워드: microglia

검색결과 311건 처리시간 0.03초

꽃잔디 메탄올 추출물의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과 (Anti-inflammatory Effects of the Methanol Extracts of Phlox subulata on LPS-induced RAW264.7 Macrophages and BV2 Microglia)

  • 김관우;이정;이환;이동성;오현철;김윤철
    • 생약학회지
    • /
    • 제50권4호
    • /
    • pp.291-298
    • /
    • 2019
  • Phlox subulata is a perennial herbaceous flower and is a member of the Polemoniaceae family. This plant is known to resist to various stresses including salt, drought, heat, and cold stresses. In this investigation, we evaluated the ant-inflammatory effect of the methanolic extract of P.subulata(PSM) on lipopolysaccharide(LPS)-induced RAW264.7 macrophages and BV2 microglia. PSM reduced the production of nitric oxide(NO) in LPS-stimulated both RAW264.7 and BV2 cells, but did not affect to the production of prostaglandin E2(PGE2). It inhibited the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 in both cells. In addition, PSM suppressed the production of pro-inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by PSM. Thus, these results suggested that P.subulata can be a candidate material to treat inflammatory diseases.

들깨 잎 추출물의 Nitric Oxide Synthase 저해활성 및 Peroxynitrite 소거활성 (Inhibitory Activity of Nitric Oxide Synthase and Peroxynitrite Scavenging Activity of Extracts of Perilla frutescens)

  • 김재연;김지선;정찬식;진창배;류재하
    • 생약학회지
    • /
    • 제38권2호통권149호
    • /
    • pp.170-175
    • /
    • 2007
  • Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO$^-$), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. We tried to evaluate the effects of two kinds of varieties of Perilla frutescens var japnica Hara on the NO production in lipopolysaccharide (LPS)-activated microglia. The perilla cultivars of Namcheondeulkkae (NC) and Boradeulkkae (BR) were developed by pure line from the local variety and by a cross between 'deulkkae' and 'chajogi', respectively. Spirit, hexane, chloroform and butanol fractions of the leaves of NC and BR inhibited the production of NO in LPS-activated microglia. The fractions of BR showed stronger activity than NC and the spirit extracts was the most potent in both cultivars. The solvent fractions of BR suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells. Moreover, the extracts of NC and BR showed the activity of peroxynitrite scavenging in cell free bioassay system. These results imply that Namcheondeulkkae and Boradeulkkae might have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

파킨슨병의 세포모델에서 진뇌산(鎭腦散)의 보호효과 (Protective effects of Jinnoe-san, a novel herbal formula in experimental in vitro models of Parkinson's disease)

  • 한상태;정지천
    • 대한한의학방제학회지
    • /
    • 제25권4호
    • /
    • pp.537-551
    • /
    • 2017
  • Objectives : Jinnoe-san (JNS) is a novel herbal formula consisting of five oriental medicinal herbs including Polygalae Radix, Prunellae Spica, Perillae Herba, Betulae Cortex, and Lonicerae Flos. In this study, we investigated the effects and molecular mechanism of JNS on Parkinson's disease in vitro model. Methods : The effects of JNS on 1-methyl-4-phenylpyridinium ($MPP^+$)-induced cell death in SH-SY5Y cells were evaluated with a cell viability assay, flow cytometry, and western blots analysis. The effects of JNS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay, enzyme linked immunosorbent assays, and western blots analysis. Result : $MPP^+$-induced cell death in SH-SY5Y cells was significantly reduced by JNS pre-treatment in a dose-dependent manner. JNS inhibited the production of reactive oxygen species, mitochondria dysfunction, and apoptosis induced by $MPP^+$ in SH-SY5Y cells. Furthermore, JNS significantly activated Akt and ERK in SH-SY5Y cells and the ability of JNS to prevent mitochondria dysfunction by $MPP^+$ was antagonized by pre-treatment of LY294002 and PD98059, an Akt and ERK inhibitor, respectively. In addition, JNS inhibited LPS-induced NO and $PGE_2$ production as well as iNOS expression and secretion of TNF-${\alpha}$, pro-inflammatory cytokines without affecting the cell viability. JNS also suppressed LPS-induced ERK activation. Conclusions : These results demonstrate that JNS has a protective effect on the dopaminergic neurons against $MPP^+$-induced neurotoxicity and anti-inflammatory effect on the LPS-stimulated microglia. These findings provide evidences for JNS to be considered as a new prescription for treating Parkinson's disease.

The Effect of Minocycline on Motor Neuron Recovery and Neuropathic Pain in a Rat Model of Spinal Cord Injury

  • Cho, Dong-Charn;Cheong, Jin-Hwan;Yang, Moon-Sul;Hwang, Se-Jin;Kim, Jae-Min;Kim, Choong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권2호
    • /
    • pp.83-91
    • /
    • 2011
  • Objective : Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury. Methods : To simulate spinal cord injury, the rats' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test Mechanical hyperalgesia was measured throughout the 28-day post -operative course via the von Frey test Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (lba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5). Results : In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of lba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of lba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline. Conclusion : By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.

삼묘환(三妙丸)의 LPS에 의해 활성화된 RAW 264.7 cells과 BV-2 Microglia cells로부터 생성되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과 (Inhibitory effects of Sam-Myo-San on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in RAW 264.7 cells and BV-2 Microglia cells)

  • 이제현;정효원;박용기
    • 대한본초학회지
    • /
    • 제21권4호
    • /
    • pp.59-67
    • /
    • 2006
  • Objectives : Sam-Myo-Whan(SMW) has been known traditional prescription with anti- anthritis activities. We investigated inhibitory effects of SMW on lipopolysaccharide (LPS)-induced nitric oxide(NO), $TNF-{\alpha}$ and inducible nitric oxide synthase(iNOS) production from RAW264.7 cells and BV-2 Microglia cells. Methods : SMW, which had been extracted with 70% MeOH, concentrated and freeze-dried was used for this experiment. After BV2 mouse brain macrophages and RAW264.7 mouse peritoneal macrophages were pretreated with increasing concentrations of SMW extract for 30min, and then activated with LPS. To investigate cytotoxicity of SMW extract, cell viability was measured by MTT assay. NO production was measured in each culture supernatant by Griess reaction. mRNA expression of iNOS in two type cells was investigated by RT-PCR. $TNF-{\alpha}$ production was measured in each culture supernatant by ELISA. Results : SMW extract significantly inhibited LPS-induced NO and $TNF-{\alpha}$ production in BV2 cells and RAW264.7 cells dose-dependently. SMW extract also greatly suppressed mRNA expression of iNOS in both type cells activated with LPS. Conclusion : These data suggests that SMW extract may have an anti-inflammatory effect through the inhibition of iNOS expression.

  • PDF

배초향 에틸아세테이트 분획의 산화방지 및 항염증 활성 (Antioxidant and anti-inflammatory effects of the ethyl acetate fraction of the Agastache rugosa extract)

  • 김보민;한영은;이화진
    • 한국식품과학회지
    • /
    • 제49권3호
    • /
    • pp.331-337
    • /
    • 2017
  • 배초향 추출물 및 분획별 생리활성 물질의 분포양상을 검정하기 위해 파이토케미컬 검색을 한 결과, 플라보노이드 확인시험에서 헥세인을 제외한 에틸아세테이트 및 부탄올 분획에서 양성반응을 확인하였다. 배초향 추출물의 극성에 따른 분획-헥세인, 에틸아세테이트 및 부탄올 분획의 산화방지 정도를 평가한 결과, 폴리페놀 함량, DPPH 라디칼 소거 및 환원력 실험에서 에틸아세테이트 분획이 다량의 폴리페놀을 함유하며 강력한 라디칼 소거 및 환원능력을 나타냈다. 또한 배초향 에틸아세테이트 분획의 항염 활성을 평가한 결과, 지방질다당류로 활성화된 BV-2 microglia에서 발생하는 과량의 산화질소(II) 생성을 억제하였을 뿐 아니라, 산화질소(II) 생성 효소인 iNOS 및 염증성 사이토카인 IL-6의 발현을 억제함을 확인하였다. 강력한 산화방지 및 항염증 활성을 나타내는 배초향 에틸아세테이트 분획내의 활성물질을 확인하고자 HPLC를 이용하여 분석한 결과, 배초향의 산화방지 물질로 잘 알려져 있는 로스마린산이 배초향 에틸아세테이트 분획에 함유되어 있음을 확인하였다.

Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향 (Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents)

  • 정벌;이종수
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.1-15
    • /
    • 2013
  • Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.

파킨슨병 모델 흰쥐에서 침치료에 의한 microglia 활성화 억제에 관한 연구 (Acupuncture inhibits microglial activation in the rat model of Parkinson's disease)

  • 황정연;최일환;박재현;강전모;박히준;임사비나
    • Korean Journal of Acupuncture
    • /
    • 제24권1호
    • /
    • pp.131-144
    • /
    • 2007
  • Objectives : Although the cause of neuronal death of Parkinson's disease remains unclear, increasing evidence points to the role of inflammatory processes. And the hallmark of brain inflammation is the activation of microglia. This study was performed to prove the effect of acupuncture on inhibiting microglial activation. Methods : The rat models which were injected with 6-hydroxydopamine were treated with acupuncture once a day on LR3 (太衝) and GB34 (陽陵泉). To prove the effect of inhibiting microglial activation, we examined the tyrosine hydroxylase (TH) immunopositive neurons and CD11b immunohistochemistry in the substantia nigra. Results : There were 18% (third day), 32% (seventh day) loss of TH-positive cell bodies in the control group and 23% (third day), 26% (seventh day) in the acupuncture group, whereas 3% (third day), 10% (seventh day) in vehicle group. The difference of optical density in substantia nigra was evaluated by subtracting log inverse gray value of contralateral side from that of ipsilateral side. With regards to the result of CD11b immunohistochemistry, acupuncture group showed significantly inhibited microglial activation compared with control group (p<0.01) on the seventh day. Conclusions : Acupuncture showed the effect of inhibition of microglial activation in seventh day. However, the effect of protection of TH positive cell bodies was not shown. So we need longer investigation of the effect of acupuncture on Parkinson's disease.

  • PDF

생강 클로로포름 분획의 활성화된 뇌신경교세포(腦神經膠細胞)에서 염증반응 억제효과 (Chloroform Fraction of Zingiberis Rhizoma Recens Modulates the Production of Inflammatory Mediators in LPS-stimulated BV2 Microglial Cells)

  • 서운교;정효원;박용기
    • 대한본초학회지
    • /
    • 제23권3호
    • /
    • pp.73-83
    • /
    • 2008
  • Objectives : The root of Zingiber officinale ROSC. (Zingiberis Rhizoma Recens; Ginger) has been widely used as one of folk remedies and food materials in many traditional preparations. Ginger is known as an effective appetite enhancer and anti-inflammatory agent. This study was performed to investigate the effect of ginger chloroform fraction (GCF) in microglia which play a central role on brain inflammation in neurodegenerative diseases. Methods : Dried ginger was extracted with 80% methanol, and then fractionated with chloroform. BV2 mouse microglial cells were cultured with different concentrations of GCF and then stimulated with LPS (1 ${\mu}g/m{\ell}$) at indicated times. The cell toxicity of GCF was determined by MTT assay. The concentrations of NO, PGE2 and cytokines were measured by Griess assay and enzyme-linked immunosorbant assay. The mRNA and protein expressions of iNOS, COX-2 and cytokines were determined by RT-PCR and Western blotting. The phosphorylation of three MAPKs (p38 MAPK, ERK1/2 and JNK) and $NF-{\kappa}B$ activation were determined by Western blotting. Results : GCF significantly inhibited LPS-induced production of inflammatory mediators, NO, $PGE_2$ and proinflammatory cytokines ($TNF-{\alpha}$ and $IL-1{\beta}$) in a dose-dependent manner. GCF attenuated LPS-induced expression of mRNA and protein of inflammatory enzymes, iNOS, COX-2 and proinflammatory cytokines through suppressing the phosphorylation of ERK1/2 and p38 MAPK and the activation of p65 $NF-{\kappa}B$ in BV2 cells. Conclusions : This study suggests that GCF may have an anti-inflammatory property through suppressing the inflammatory mediator production released by activated microglia after the brain injury.

  • PDF

GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats

  • Lee, Jee Youn;Choi, Hae Young;Park, Chan Sol;Pyo, Mi Kyung;Yune, Tae Young;Kim, Go Woon;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.58-67
    • /
    • 2019
  • Background: Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ~30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods: Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results: The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion: These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.