• Title/Summary/Keyword: microfracture

Search Result 62, Processing Time 0.024 seconds

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

Mosaicplasty for the Treatment of the Chondral Defect of the Knee (슬관절의 연골결손에 대한 자가 골연골 이식술)

  • Choi, Nam-Hong
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • Several methods to resurface the lost cartilage of the knee have been used, multiple drilling, microfracture, abrasion arthroplasty Resurfaced cartilages resulting from above techniques are mostly fibrocartilage. Autologous osteochondral graft transfer and autologous chondrocyte transfer are known to resurface the lost cartilage with mostly hyaline cartilage. This article reviews basic researches, indications, operative technique, and clinical results of autologous osteochondral graft transfer.

  • PDF

An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina (다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

Mechanical Properties and Microstructure of Dental Heat-Pressable Glass-Ceramics (치과용 열가압 글라스 세라믹스의 기계적 성질과 미세구조)

  • 이해형;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • Biaxial flexure strength (ball-on-3-ball) and fracture toughness (indentation microfracture) of heat-pressable glass-ceramics for dental use were investigated in this study. Crystal phase and microstructure of glass-ceramics were analyzed by XRD. SEM, and TEM. Crack propagation in specimens was not effectively arrested by dispersed crystalline particles. However, higher degree of crystallization probably contributes to strengthening of glass-ceramics. Better clinical reliability can be expected from lithium disilicate glass-ceramic because of its significantly higher biaxial flexure strength and fracture toughness.

Analysis of Bridging Stress Effect of Polycrystalline aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석)

  • 손기선;이선학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.583-589
    • /
    • 1996
  • In this study a new analytical model which can describe the relationship between the bridging stress and microstructure has beenproposed in order to investigate the microstructural effect on the R-curve behavior in polycrystalline aluminas since the R-curve can be derived via the bridging stress function. In the currently developed model function the distribution of grain size is considered as a microstructural factor in modeling of bridging stress function and thus the bridging stress function including three constants PM, n, and Cx, can be established analytically and quantitatively. The results indicate that the n value is closely related to the grain size distribution thereby providing a reliability of the current model for the bridging stress analysis. Thus this model which explains the correlation of the bridging stress distribution and microstructual parame-ters is useful for the systematic interpretation of microfracture mechanism including the R-curve behavior in polycrystalline aluminas.

  • PDF

Mosaicplasty for The Treatment of the Chondral Defect of The Knee (슬관절의 연골결손에 대한 자가 골연골 이식술)

  • Choi, Nam-Hong
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.3
    • /
    • pp.147-153
    • /
    • 2008
  • Several methods to resurface the lost cartilage of the knee have been used; multiple drilling, microfracture, abrasion arthroplasty. Resurfaced cartilages resulting from above techniques are mostly fibrocartilage. Autologous osteochondral graft transfer and autologous chondrocyte transfer are known to resurface the lost cartilage with mostly hyaline cartilage. This article reviews basic researches, indications, operative technique, and clinical results of autologous osteochondral graft transfer.

  • PDF

Effect of the Amount of Free Silicon on the Tribological Properties of Si-SiC (Free Silicon 함량에 따른 Si-SiC 복합재료의 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.520-528
    • /
    • 1994
  • An investigation was carried out to understand the effect of the amount of free silicon on the tribological properties of Si-SiC. The specimens of dense Si-SiC composites with various amount of free silicon were fabricated in the temperature of 175$0^{\circ}C$ after molding under various pressure. Wear properties were measured by ball-on-plate wear tester under the constant weight of 4 Kgf at constant sliding speed of 500 mm/sec in water. As the result, the Rockwell hardness and fracture strength of Si-SiC composites remained nearly constant up to 16.62 vol% of free silicon in the Si-SiC microstructure. The Si-SiC composites containing the free silicon of 16.62 vol% was considered to be prominent in the tribological properties, which had the friction coefficient of 0.08 and the specific wear rate of 2.4$\times$10-8$\textrm{mm}^2$Kgf-1. The analysis of the wear surface indicated the complicated processes occuring on the surface such as fine polishing, abrasion, microfracture.

  • PDF

Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock (가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성)

  • Song, Jun-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.

Osteochondral Lesions of the Talus (거골의 골연골 병변)

  • Lee, Keun-Bae
    • Journal of Korean Foot and Ankle Society
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Osteochondral lesions of the talus are isolated cartilage and/or bone lesions that are known cause of chronic ankle pain. They can occur as the result of a single acute ankle injury or from repetitive loading of the talus. Technical development in radiologic imaging and ankle arthroscopy have improved diagnostic capabilities for detecting osteochondral lesions. Characteristics which are important in assessing an osteochondral lesions include: the size, the type (chondral, subchondral, cystic), the stability, the displacement, the location, and the containment of lesion. Nonoperative treatment involving period of casting and non-weight-bearing is recommended for acute, non-displaced osteochondral lesions in select pediatric and adolescent patients. Operative treatment is recommended for unstable lesions or failed conservative management. Marrow stimulation techniques (abrasion chondroplasty, multiple drilling, microfracture), osteochondral autograft or allograft, autologous chondrocyte implantation, are frequently employed. The purpose of this article is to review the historical background, etiology, classification systems, diagnostic strategies, and to describe a systematic approach to management of osteochondral lesions of the talus.

Study on Abrasive Wear Behaviour of a Carbon Fiber Composites (탄소 섬유 강화 고분자 복합재의 연삭마모 특성에 관한 연구)

  • Koh, S.W.;Yang, B.C.;Kim, H.J.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • Present study was investigated the effect of the particle of the counterface of unidirectional carbon fiber reinforced composite. The friction coefficient of composite and the specific wear rate different sliding velocity were measured for this materials. The friction track of counterface was observed by an optical microscope and scanning electron microscope. There were insignificant effects of the specific wear rate under lower Sic abrasive particle, however it showed high effect on $30{\mu}m$ abrasive particle size. There were significant effects of friction and wear behavior of the fiber direction under 0.3m/s sliding speed. Major failure mechanisms can be classified such as microfracture, plowing, microcutting, cutting and cracking.

  • PDF