Osteochondral Lesions of the Talus

거골의 골연골 병변

  • Lee, Keun-Bae (Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital)
  • 이근배 (전남대학교 의과대학 정형외과학교실)
  • Received : 2012.01.15
  • Accepted : 2012.02.14
  • Published : 2012.03.15

Abstract

Osteochondral lesions of the talus are isolated cartilage and/or bone lesions that are known cause of chronic ankle pain. They can occur as the result of a single acute ankle injury or from repetitive loading of the talus. Technical development in radiologic imaging and ankle arthroscopy have improved diagnostic capabilities for detecting osteochondral lesions. Characteristics which are important in assessing an osteochondral lesions include: the size, the type (chondral, subchondral, cystic), the stability, the displacement, the location, and the containment of lesion. Nonoperative treatment involving period of casting and non-weight-bearing is recommended for acute, non-displaced osteochondral lesions in select pediatric and adolescent patients. Operative treatment is recommended for unstable lesions or failed conservative management. Marrow stimulation techniques (abrasion chondroplasty, multiple drilling, microfracture), osteochondral autograft or allograft, autologous chondrocyte implantation, are frequently employed. The purpose of this article is to review the historical background, etiology, classification systems, diagnostic strategies, and to describe a systematic approach to management of osteochondral lesions of the talus.

Keywords

References

  1. Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35:1680-7. https://doi.org/10.1177/0363546507303561
  2. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41-A:988-1020.
  3. Monro A. Part of the cartilage of the joint separated and ossified. In: Medical essays and observations, 2nd ed. Edinburgh: Ruddimans; 1737. 305.
  4. König F. Uber freie Korper in den Gelenken [On the presence of loose bodies in joints]. Dtsch Z f Chir. 1888;27:90-109. https://doi.org/10.1007/BF02792135
  5. Clanton TO, DeLee JC. Osteochondritis dissecans. History, pathophysiology and current treatment concepts. Clin Orthop Relat Res. 1982;(167):50-64.
  6. Flick AB, Gould N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): review of the literature and new surgical approach for medial dome lesions. Foot Ankle. 1985;5:165-85. https://doi.org/10.1177/107110078500500403
  7. Thompson JP, Loomer RL. Osteochondral lesions of the talus in a sports medicine clinic. A new radiographic technique and surgical approach. Am J Sports Med. 1984;12:460-3. https://doi.org/10.1177/036354658401200611
  8. Bosien WR, Staples OS, Russell SW. Residual disability following acute ankle sprains. J Bone Joint Surg Am. 1955;37:1237-43. https://doi.org/10.2106/00004623-195537060-00011
  9. Schenck RC Jr, Goodnight JM. Osteochondritis dissecans. J Bone Joint Surg Am. 1996;78:439-56. https://doi.org/10.2106/00004623-199603000-00018
  10. Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int. 2000;21:119-26. https://doi.org/10.1177/107110070002100205
  11. Loomer R, Fisher C, Lloyd-Smith R, Sisler J, Cooner T. Osteochondral lesions of the talus. Am J Sports Med. 1993;21:13-9. https://doi.org/10.1177/036354659302100103
  12. Ferkel RD, Sgaglione NA, Del Pizzo W, et al. Arthroscopic treatment of osteochondral lesions of the talus: technique and results. Orthop Trans. 1990;14:172.
  13. Anderson IF, Crichton KJ, Grattan-Smith T, Cooper RA, Braizer D. Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am. 1989;71:1143-52. https://doi.org/10.2106/00004623-198971080-00004
  14. Taranow WS, Bisignani GA, Towers JD, Conti SF. Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int. 1999;20:474-80. https://doi.org/10.1177/107110079902000802
  15. Hepple S, Winson IG, Glew D. Osteochondral lesions of the talus: A revised classification. Foot Ankle Int. 1999;20:789-93. https://doi.org/10.1177/107110079902001206
  16. Pritsch M, Horoshovski H, Farine I. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 1986;68:862-5. https://doi.org/10.2106/00004623-198668060-00007
  17. Ferkel RD, Cheng JC. Ankle and subtalar arthroscopy. In: Kelikian AS, ed. Operative treatment of the foot and ankle. Stamford (CT): Appleton & Lange; 1999. 321.
  18. Chew KT, Tay E, Wong YS. Osteochondral lesions of the talus. Ann Acad Med Singapore. 2008;37:63-8.
  19. Santrock RD, Buchanan MM, Lee TH, Berlet GC. Osteochondral lesions of the talus. Foot Ankle Clin. 2003;8:73-90. https://doi.org/10.1016/S1083-7515(03)00007-X
  20. Ferkel RD, Flannigan BD, Elkins BS. Magnetic resonance imaging of the foot and ankle: correlation of normal anatomy with pathologic conditions. Foot Ankle. 1991;11:289-305. https://doi.org/10.1177/107110079101100506
  21. Urman M, Ammann W, Sisler J, et al. The role of bone scintigraphy in the evaluation of talar dome fractures. J Nucl Med. 1991;32:2241-4.
  22. Kumai T, Takakura Y, Higashiyama I, Tamai S. Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 1999;81:1229-35. https://doi.org/10.2106/00004623-199909000-00004
  23. Bourgeois P, Chales G, Dehais J, Delcambre B, Kuntz JL, Rozenberg S. Efficacy and tolerability of chondroitin sulfate 1200 mg/day vs chondroitin sulfate 3 x 400 mg/day vs placebo. Osteoarthritis Cartilage. 1998;6 Suppl A:25-30. https://doi.org/10.1016/S1063-4584(98)80008-3
  24. Canale ST, Belding RH. Osteochondral lesions of the talus. J Bone Joint Surg Am. 1980;62:97-102. https://doi.org/10.2106/00004623-198062010-00014
  25. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22:1085-92. https://doi.org/10.1016/j.arthro.2006.05.016
  26. O'Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80:1795-812. https://doi.org/10.2106/00004623-199812000-00011
  27. Larsen MW, Pietrzak WS, DeLee JC. Fixation of osteochondritis dissecans lesions using poly(l-lactic acid)/ poly(glycolic acid) copolymer bioabsorbable screws. Am J Sports Med. 2005;33:68-76. https://doi.org/10.1177/0363546504265927
  28. Kennedy JG, Suero EM, O'Loughlin PF, Brief A, Bohne WH. Clinical tips: retrograde drilling of talar osteochondral defects. Foot Ankle Int. 2008;29:616-9. https://doi.org/10.3113/FAI.2008.0616
  29. Lee KB, Bai LB, Yoon TR, Jung ST, Seon JK. Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med. 2009;37 Suppl 1:63S-70. https://doi.org/10.1177/0363546509348471
  30. Lee KB, Bai LB, Chung JY, Seon JK. Arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2010;18:247-53. https://doi.org/10.1007/s00167-009-0914-x
  31. Jung HG, Carag JA, Park JY, Kim TH, Moon SG. Role of arthroscopic microfracture for cystic type osteochondral lesions of the talus with radiographic enhanced MRI support. Knee Surg Sports Traumatol Arthrosc. 2011;19:858-62. https://doi.org/10.1007/s00167-011-1411-6
  32. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24:106-12. https://doi.org/10.1016/j.arthro.2007.07.022
  33. Angermann P, Jensen P. Osteochondritis dissecans of the talus: long-term results of surgical treatment. Foot Ankle 1989;10:161-3. https://doi.org/10.1177/107110078901000309
  34. Kumai T, Takakura Y, Higashiyama I, Tamai S. Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 1999;81:1229-35. https://doi.org/10.2106/00004623-199909000-00004
  35. Oznur A. Medial malleolar window approach for osteochondral lesions of the talus. Foot Ankle Int. 2001;22:841-2. https://doi.org/10.1177/107110070102201013
  36. Thordarson DB, Kaku SK. Results of step-cut medial malleolar osteotomy. Foot Ankle Int. 2006;27:1020-3. https://doi.org/10.1177/107110070602701203
  37. Ziran BH, Abidi NA, Scheel MJ. Medial malleolar osteotomy for exposure of complex talar body fractures. J Orthop Trauma. 2001;15:513-8. https://doi.org/10.1097/00005131-200109000-00009
  38. Muir D, Saltzman CL, Tochigi Y, Amendola N. Talar dome access for osteochondral lesions. Am J Sports Med. 2006; 34:1457-63. https://doi.org/10.1177/0363546506287296
  39. Scranton PE Jr, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg Br. 2006;88:614-9.
  40. Al-Shaikh RA, Chou LB, Mann JA, Dreeben SM, Prieskorn D. Autologous osteochondral grafting for talar cartilage defects. Foot Ankle Int. 2002;23:381-9. https://doi.org/10.1177/107110070202300502
  41. Draper SD, Fallet LM. Autogenous bone grafting for the treatment of talar dome lesions. J Foot Ankle Surg. 2000;39:15-23 https://doi.org/10.1016/S1067-2516(00)80059-9
  42. Hangody L, Ráthonyi GK, Duska Z, Vásárhelyi G, Füles P, Módis L. Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am. 2004;86-A Suppl 1:65-72.
  43. Hangody L, Kish G, Modis L, et al. Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int. 2001;22:552-8. https://doi.org/10.1177/107110070102200704
  44. Sammarco GJ, Makwana NK. Treatment of talar osteochondral lesions using local osteochondral graft. Foot Ankle Int. 2002;23:693-8. https://doi.org/10.1177/107110070202300803
  45. Raikin SM. Stage VI: massive osteochondral defects of the talus. Foot Ankle Clin. 2004;9:737-44. https://doi.org/10.1016/j.fcl.2004.06.003
  46. Gross AE, Agnidis Z, Hutchison CR. Osteochondral defects of the talus treated with fresh osteochondral allograft transplantation. Foot Ankle Int. 2001;22:385-91. https://doi.org/10.1177/107110070102200505
  47. Giannini S, Buda R, Grigolo B, Vannini F. Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot Ankle Int. 2001;22:513-7. https://doi.org/10.1177/107110070102200612
  48. Cohen MM, Altman RD, Hollstrom R, Hollstrom C, Sun C, Gipson B. Safety and efficacy of intra-articular sodium hyaluronate (Hyalgan) in a randomized, double-blind study for osteoarthritis of the ankle. Foot Ankle Int. 2008;29:657-63. https://doi.org/10.3113/FAI.2008.0657
  49. Pleimann JH, Davis WH, Cohen BE, Anderson RB. Viscosupplementation for the arthritic ankle. Foot Ankle Clin. 2002;7:489-94. https://doi.org/10.1016/S1083-7515(02)00021-9
  50. Tytherleigh-Strong G, Hurtig M, Miniaci A. Intra-articular hyaluronan following autogenous osteochondral grafting of the knee. Arthroscopy. 2005;21:999-1005. https://doi.org/10.1016/j.arthro.2005.05.001
  51. Akai M, Hayashi K. Effect of electrical stimulation on musculoskeletal systems; a meta-analysis of controlled clinical trials. Bioelectromagnetics. 2002;23:132-43 https://doi.org/10.1002/bem.106
  52. Bodamyali T, Bhatt B, Hughes FJ, et al. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun. 1998;250:458-61. https://doi.org/10.1006/bbrc.1998.9243
  53. Chang K, Chang WH, Huang S, Huang S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res. 2005;23:1308-14.
  54. Lippiello L, Chakkalakal D, Connolly JF. Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects. J Orthop Res. 1990;8:266-75. https://doi.org/10.1002/jor.1100080216
  55. Wang Z, Clark CC, Brighton CT. Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg Am. 2006;88:1053-65. https://doi.org/10.2106/JBJS.E.00443
  56. Benazzo F, Cadossi M, Cavani F, et al. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res. 2008;26:631-42. https://doi.org/10.1002/jor.20530
  57. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76:26-34. https://doi.org/10.2106/00004623-199401000-00004
  58. Khan Y, Laurencin CT. Fracture repair with ultrasound: clinical and cell-based evaluation. J Bone Joint Surg Am. 2008;90 Suppl 1:138-44. https://doi.org/10.2106/JBJS.G.01218
  59. Ebisawa K, Hata K, Okada K, et al. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng. 2004;10:921-9. https://doi.org/10.1089/1076327041348437
  60. Parvizi J, Parpura V, Greenleaf JF, Bolander ME. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res. 2002;20:51-7. https://doi.org/10.1016/S0736-0266(01)00069-9
  61. Jia XL, Chen WZ, Zhou K, Wang ZB. Effects of low-intensity pulsed ultrasound in repairing injured articular cartilage. Chin J Traumatol. 2005;8:175-8.
  62. Han SH, Kim YH, Park MS, et al. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. J Biomed Mater Res A. 2008;87:850-61.
  63. Jeong WK, Oh SH, Lee JH, Im GI. Repair of osteochondral defects with a construct of mesenchymal stem cells and a polydioxanone/poly (vinyl alcohol) scaffold. Biotechnol Appl Biochem. 2008;49(Pt 2):155-64. https://doi.org/10.1042/BA20070149
  64. Kobayashi T, Ochi M, Yanada S, et al. A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy. 2008;24:69-76. https://doi.org/10.1016/j.arthro.2007.08.017
  65. Gandhi A, Bibbo C, Pinzur M, Lin SS. The role of platelet-rich plasma in foot and ankle surgery. Foot Ankle Clin. 2005;10:621-37. https://doi.org/10.1016/j.fcl.2005.06.009
  66. Joyce ME, Jingushi S, Scully SP, Bolander ME. Role of growth factors in fracture healing. Prog Clin Biol Res. 1991;365:391-416.
  67. Brehm W, Aklin B, Yamashita T, et al. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage. 2006;14:1214-26. https://doi.org/10.1016/j.joca.2006.05.002
  68. Munirah S, Samsudin OC, Chen HC, Salmah SH, Aminuddin BS, Ruszymah BH. Articular cartilage restoration in load-bearing osteochondral defects by implantation of autologous chondrocyte-fibrin constructs: an experimental study in sheep. J Bone Joint Surg Br. 2007;89:1099-109.
  69. Kendoff D, Geerling J, Mahlke L, et al. Navigated Iso- C(3D)-based drilling of a osteochondral lesion of the talus. Unfallchirurg. 2003;106:963-47.
  70. Kendoff D, Hüfner T, Citak M, et al. Navigated Iso-C3D-based percutaneous osteoid osteoma resection: a preliminary clinical report. Comput Aided Surg. 2005;10:157-63.
  71. McGahan PJ, Pinney SJ. Current concept review: osteochondral lesions of the talus. Foot Ankle Int. 2010;31:90-101. https://doi.org/10.3113/FAI.2010.0090
  72. Coughlin MJ, Mann RA, Saltzman CL. Fractures and fracture-dislocations of the talus. Surgery of the foot and ankle. 8th ed. Philadelphia: Mosby; 2007. 2122.
  73. Ferkel RD. Arthroscopic Surgery: The Foot and Ankle. Philadelphia: JB Lippincott; 1999:145-69.
  74. Lee KB, Yang HG, Moon ES, Song EK. Modified step-cut medial malleolar osteotomy for osteochondral grafting of the talus. Foot Ankle Int. 2008;29:1107-10. https://doi.org/10.3113/FAI.2008.1107