• Title/Summary/Keyword: microfiltration by ceramic membrane

Search Result 42, Processing Time 0.019 seconds

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.

Water Treatment of High Turbid Source by Tubular Ceramic Microfiltration with Periodic Water-back-flushing System

  • Lee, Hyuk-Chan;Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • We performed periodic water-back-flushing using permeate water to minimize membrane fouling to enhance permeate flux in tubular ceramic microfiltration system for water treatment of high turbid source. The filtration time (FT) = 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume $(V_T)\;=\;6.805L$. Also in the result of BT effect at fixed FT = 10 min and BT (back-flushing time) = 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_o$, and we could obtain the highest $V_T\;=\;6.660\;L$. Consequently, FT = 2 min and BT = 6 sec could be the optimal condition in water treatment of high turbid source above 10 NTU. However, FT = 10 min and BT = 20 sec was superior to reduce operating costs because of lower back-flushing frequency. Then the average quality of water treated by our tubular ceramic MF system was turbidity of 0.07 NTU, $COD_{Mn}$ of 1.86 mg/L and $NH_3-N$ of 0.007 mg/L.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of Organic Materials in $N_2$-back-flushing (세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리: 질소 역세척 시 유기물의 영향)

  • Park, Jin-Yong;Park, Gil-Yong
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.203-211
    • /
    • 2009
  • In this study, we used the hybrid module that was composed of granular activated carbons (GAC) packing between module inside and outside of tubular ceramic microfiltration membrane for advanced drinking water treatment. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. $N_2$-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling and to improve permeate flux (J). As a result, resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L step by step, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were excellent above 99.36% and 97.19%, respectively, but that of $UV_{254}$ absorbance for only microfiltration without GAC at 10 mg/L of humic acid was decreased a little as 90.84%.

Wastewater treatment using a hybrid process coupling adsorption on marl and microfiltration

  • Maimoun, Bakhta;Djafer, Abderrahmane;Djafer, Lahcene;Marin-Ayral, Rose-Marie;Ayral, Andre
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.275-282
    • /
    • 2020
  • Hranfa's marl, a local natural mineral, is selected for the decontamination by adsorption of aqueous effluents in textile industry. Its physicochemical characterization is first performed. It is composed mainly of Calcite, Quartz, Ankerite and Muscovite. Its specific surface area is 40 ㎡ g-1. Its adsorption performance is then tested in batch conditions using an industrial organic dye, Bemacid Red E-TL, as a model pollutant. The measured adsorption capacity of Hranfa's marl is 16 mg g-1 which is comparable to that of other types of natural adsorbents. A hybrid process is tested coupling adsorption of the dye on marl in suspension and microfiltration. An adsorption reactor is inserted into the circulation loop of a microfiltration pilot using ceramic membranes. This makes possible a continuous extraction of the treated water provided that a periodic replacement of the saturated adsorbent is done. The breakthrough curve obtained by analyzing the dye concentration in the permeate is close to the ideal one considering that no dye will cross the membrane as long as the adsorbent load is not saturated. These first experimental data provide proof of concept for such a hybrid process.

Effect of Periodic Water-back-flushing Time ad Period in Water Treatment by Tubular Alumina Ceramic Microfiltration

  • Park, Jin-Yong;Lee, A-Reum
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • In this study periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic micro filtration system for Gongji stream water treatment in Chuncheon city. The filtration time (FT) 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_0$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 7.44L. Also in the results of BT effect at fixed FT 10 min, BT (back-flushing time) 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_0$, and we could be obtained the highest $V_T$ of 8.04 L. Consequently FT 10 min and BT 20 sec could be the optimal condition in Gongji stream water treatment. Then the average rejection rates of pollutants by our tubular ceramic MF system were 93.8% for Turbidity, 20.7% for $COD_{Mn}$, 39.2% for $NH_3$-N and 31.5% for T-P.

Purification of Fermentation Products by Inorganic Membranes

  • Hasegawa, Hiroshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.102-105
    • /
    • 1995
  • The membrane separation process is being utilized to save energy in various fields such as the food, biotechnology, chemical, enviromental fields. Especially the use of ceramic membrane among various inorganic membranes is expected to expand to their excellent thermal, chemical and mechanical resistance. In this presentation, we would like to explain our ceramic membrane CEFILT MF for microfiltration and CEFILT UF for ultra-filtration, and the purification of fermentation products as the application example using CEFILT MF.

  • PDF

Textile Wastewater Treatment by MF-UF Combined Membrane Filtration (MF-UF 분리막 복합공정에 의한 염색가공 폐수처리)

  • Yang, Jeongmok;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • Combined membrane process of ceramic microfiltration (MF) and polymer ultrafiltration (UF) was optimized for the removal of color and total organic carbon (TOC) from textile wastewater. Membrane regeneration was performed for the efficient operation by backflushing and chemical cleaning. Flux of 10.3% increased by the pulse backflushing of 1 second every 2 minutes in ceramic microfiltration. Membrane regeneration of 97% was obtained by chemical cleaning with 0.1% sodium hydroxide in polymer ultrafiltration. The removal efficiency of TOC, color and SS (suspended solid) were 84.6%, 97.4% and 100%, respectively. The combined process was found to be suitable for the removal of color and residual organics from textile wastewater.

  • PDF

Effect of $N_2$-back-flushing in Multi Channels Ceramic Microfiltration System for Paper Wastewater Treatment (제지폐수 처리를 위한 다채널 세라믹 정밀여과 시스템에서 질소 역세척 효과)

  • Park Jin-Yong;Choi Sung-Jin;Park Bo-Reum
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • The ceramic microfiltration system with periodic $N_2$-back-flushing was operated for treating paper wastewater discharged from a company making toilet papers by recycling milk or juice cartons. Two kinds of alumina membranes with 7 channels used here for recycling paper wastewater. The optimal filtration time interval for HC04 membrane with $0.4{\mu}m$ pore size was lower value of 4 min than 16 min for HC10 with $1.0{\mu}m$ pore size at fixed back-flushing time 40 sec, trans-membrane pressure $1.0kg_f/cm^2$ and back-flushing pressure $5.0kg_f/cm^2$. From the results of TMP effect at fixed filtration time interval and back-flushing time, the lower TMP was better on membrane fouling because high TMP could make easily membrane cake and fouling inside membrane structure. However, we could acquire the highest volume of total permeate at the highest TMP for the reason that TMP was driving force in our filtration system to treat paper wastewater. Then the permeate water of low turbidity was acquired in our microfiltration system using multi channels ceramic membranes, and the treated water could be reused in paper process.