Browse > Article
http://dx.doi.org/10.12989/mwt.2020.11.4.275

Wastewater treatment using a hybrid process coupling adsorption on marl and microfiltration  

Maimoun, Bakhta (Laboratoire Eau et Environnement, Hassiba Benbouali University)
Djafer, Abderrahmane (Laboratoire Eau et Environnement, Hassiba Benbouali University)
Djafer, Lahcene (Laboratoire Eau et Environnement, Hassiba Benbouali University)
Marin-Ayral, Rose-Marie (Institut Charles Gerhardt Montpellier, Univ Montpellier)
Ayral, Andre (Institut Europeen des Membranes, Univ Montpellier)
Publication Information
Membrane and Water Treatment / v.11, no.4, 2020 , pp. 275-282 More about this Journal
Abstract
Hranfa's marl, a local natural mineral, is selected for the decontamination by adsorption of aqueous effluents in textile industry. Its physicochemical characterization is first performed. It is composed mainly of Calcite, Quartz, Ankerite and Muscovite. Its specific surface area is 40 ㎡ g-1. Its adsorption performance is then tested in batch conditions using an industrial organic dye, Bemacid Red E-TL, as a model pollutant. The measured adsorption capacity of Hranfa's marl is 16 mg g-1 which is comparable to that of other types of natural adsorbents. A hybrid process is tested coupling adsorption of the dye on marl in suspension and microfiltration. An adsorption reactor is inserted into the circulation loop of a microfiltration pilot using ceramic membranes. This makes possible a continuous extraction of the treated water provided that a periodic replacement of the saturated adsorbent is done. The breakthrough curve obtained by analyzing the dye concentration in the permeate is close to the ideal one considering that no dye will cross the membrane as long as the adsorbent load is not saturated. These first experimental data provide proof of concept for such a hybrid process.
Keywords
hybrid process; microfiltration by ceramic membrane; natural adsorbents; wastewater treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Florke, M., Kynast, E., Barlund, I., Eisner, S., Wimmera, F. and Alcamo, J. (2013), "Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: global simulation study", Glob. Environ. Change., 23(1), 144-156. https://doi.org/10.1016/j.gloenvcha.2012.10.018.   DOI
2 Fu, Y. and Viraraghavan, T. (2001), "Fungal decolorization of dye wastewaters: A review", Bioresour. Technol., 79, 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1.   DOI
3 Hasnain, Isa M., Lang, L.S., Asaari, F.A.H., Aziz, H.A., Azam Ramli, N. and Dhas, J.P.A. (2007), "Low cost removal of disperse dyes from aqueous solution using palm ash", Dyes Pigm., 74(2), 446-453. http://dx.doi.org/10.1016/j.dyepig.2006.02.025.   DOI
4 Ho, Y. and Ofomaja, A.E. (2006), "Biosorption thermodynamics of cadmium on coconut copra mealas biosorbent", J. Biochem. Eng., 30, 117-123. https://doi:10.1016/j.bej.2006.02.012.   DOI
5 Huang, C.P. (1975), "Adsorption of Tryptophan onto Calcium Carbonate Surface", Environ. Lett., 9(1), 7-17. https://doi.org/10.1080/00139307509437452.   DOI
6 Iler, R.K., (1979), The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, John Wiley and Son, Chichester, United Kingdom.
7 Aguedal, H., Hentit H., Merouani, D., Iddou, A., Siskins, and Jumas, J. (2017), "Improvement of the sorption characteristics of diatomite by heat treatment", Key Eng. Mater.,721, 111-116. https://doi.org/10.4028/www.scientific.net/KEM.721.111.   DOI
8 Aguedal, H., Iddou, A., Azziz, A., Shishkin, A., Locs, J. and Juhna, T. (2019), "Effect of thermal regeneration of diatomite adsorbent on its efficacity for removal of dye from water", Int. J. Environ. Sci. Technol., 16(1), 113-124. https://doi.org/10.1007/s13762-018-1647-5.   DOI
9 Aksu, Z. and Karabayir, G. (2008), "Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye", Bioresource Technol., 99, 7730- 7741. https://doi.org/10.1016/j.biortech.2008.01.056   DOI
10 Kumar, S., Zafar, M., Prajapati, J.K., Kumar, S. and Kannepalli, S., (2011), "Modeling studies on simultaneous adsorption of phenol andresorcinol onto granular activated carbon from simulated aqueous solution", J. Hazard. Mater., 185, 287-294. https://doi.org/10.1016/j.jhazmat.2010.09.032.   DOI
11 Namasivayam, C. and Kavitha, D., (2002), "Removal of congo red from water by adsorption on to activated carbon prepared from coirpith, an agricultural solid waste", Dyes Pigm. 54, 47-58. http://dx.doi.org/10.1016/S0143-7208(02)00025-6.   DOI
12 Perineau, F., Molinier, J. and Gazet, A., (1983), "Adsorption of ionic dyes on wool carbonizing waste", Wat. Res., 17(5), 559-67.   DOI
13 Qiu, L., Cheng, R., Song, Q.,Qiu, Q., Wang, Y., Wang, Y., Han, Q. and Hu, M. (2018), "A kind of integrated device for advanced treatment of industrial wastewater by granular active carbon coupling ceramic membrane and use method thereof", Faming Zhuanli Shenqing, CN 108101266 A 20180601.
14 Reddad, Z., Gerentes, C., Andres, Y. and LeCloirec, P. (2004), "Lead removal by a natural polysaccharide in membrane reactors", Water Sc. Technol., 49(1), 163-170. https://doi.org/10.2166/wst.2004.0048.   DOI
15 Sadki, H., Ziat, K., Saidi, M. (2014), "Adsorption d'un colorant cationique d'un milieu aqueux sur une argile locale activee", J. Mater. Environ. Sci. 5, 2060-2065.
16 Singh, V., Sharma, A.K., Tripathi, D.N., Sanghi, R. (2009), "Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes", J. Hazard. Mater. 161, 955-966. https://doi.org/10.1016/j.jhazmat.2008.04.096.   DOI
17 Vaughan, T., Seo, C.W., Marschall, W.E. (2001), "Removal of selected metal ions from aqueous solution using modified corncobs", Bioresour. Technol. 78, 133-139. https://doi.org/10.1016/S0960-8524(01)00007-4.   DOI
18 Yang, Y., Ladisch, C. and Ladisch, M. R. (1988), "Cellulosic adsorbents for treating textile mill effluents", Enzym. Microb. Tech., 10, 632-636. https://doi.org/10.1016/0141-0229(88)90111-1.   DOI
19 Wang, J., Song, H., Chen, S., He, J. and Ji, C. (2019), "Adsorption-membrane separation coupling device for removing antibiotics in wastewater and wastewater treatment method", Faming Zhuanli Shenqing, CN 109867372 A 20190611.
20 Yaneva, Z. and Koumanova, B. (2006), "Comparative modelling of mono- and dinitrophenols sorption on yellow bentonite from aqueous solutions", J. Colloid Interface Sci., 293, 303-311. https://doi.org/10.1016/j.jcis.2005.06.069.   DOI
21 Zahaf, F., Dali, N., Marouf, R. and Ouadjenia, F. (2015), "Removal of a textile dye by pillared clay", J. Chem. Environ. Eng., 6(1), 11-14.
22 Zaharia, C. and Suteu, D. (2012), "Textile organic dyes - characteristics, polluting effects and separation/elimination procedures from industrial effluents - A critical overview", Organic Pollutants Ten Years after the Stockholm Convention: Environmental and Analytical Update, InTech, Rijeka, Croatia. 55-86.
23 Zheng, X., Chen, D., Wang, Z., Lei, Y. and Cheng, R. (2013), "Nano-$TiO_2$ membrane adsorption reactor (MAR) for virus removal in drinking water", Chem. Eng. J., 230, 180-187. https://doi.org/10.1016/j.cej.2013.06.069.   DOI
24 Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F. and Trouve, G. (2011), "Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: Kinetic, equilibrium and thermodynamic studies", Desalination, 271, 80-87. https://dx.doi.org/10.1016/j.desal.2010.12.009.   DOI
25 Bagane, M. and Guiza, S. (2000), "Elimination d'un colorant des effluents de l'industrie textile par adsorption", Ann. Chim. Sci. Mat., 25, 615-626.   DOI
26 Baghriche, O., Djebbar, K. and Sehili, T. (2008), "Etude cinetique de l'adsorption d'un colorant cationique (vert de methyle) sur du charbon actif en milieu aqueux", Sciences et Technologie, 27, 57-62.
27 Barkat, M., Chegrouche, S., Mellah, A., Bensmain, B., Nibou, D. and Boufatit, M. (2014), "Application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions", J. Surface Eng. Mater. Adv. Technol., 4(4), 210-226. https://doi.org/10.4236/jsemat.2014.44024.   DOI
28 Cases, J. M. (1969), "Zero point charge and structure of silicates", Journal de Chimie Physique et de Physico-Chimie Biologique, 66(10), 1602-1611. https://doi.org/10.1051/jcp/196966s21602.   DOI
29 Cimino, G., Passerini, A. and Toscano, G. (2000), "Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell", Water Research, 34(11), 2955-2962. https://dx.doi.org/10.1016/S0043-1354(00)00048-8.   DOI
30 Charumathi, D. and Das, N. (2012), "Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. Tropicalis", Desalination, 285, 22-30. https://dx.doi.org/10.1016/j.desal.2011.09.023.   DOI
31 CHT Smart Chemistry with Character (2019), The CHT Group; Tubingen, Germany, https://www.cht.com.
32 Dali-Youcef, Z., Bouabdasselem, H. and Bettahar, N. (2006), "Elimination des composes organiques par des argiles locales", Comptes Rendus Chimie, 9(10), 1295-1300. https://doi.org/10.1016/j.crci.2006.05.001.   DOI
33 Emam, H. E., Ahmed H. B., El-Deib H. R., El-Dars F. M.S.E. and Abdelhameed R.M. (2019), "Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric", J. Colloid Interface Sci., 556, 193-205. https://doi.org/10.1016/j.jcis.2019.08.051.   DOI
34 Dincer, A.R., Gunes, Y. and Karakaya, N. (2007), "Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution", J. Hazardous Mater., 141(3), 529-535. https://doi.org/10.1016/j.jhazmat.2006.07.064.   DOI
35 Djafer, A., Kouadri Moustefai, S., Iddou, A. and Si Al,i B. (2014), "Study of bimacid dye removal from aqueous solution: A comparative study between adsorption on pozzolana, bentonite, and biosorption on immobilized anaerobic sulfate-reducer cells", Desalination Water Treat., 52(40-42), 7723-7732. https://doi.org/10.1080/19443994.2013.833866.   DOI
36 Djafer, A., Djafer, L., Maimoun, B. and Ayral, A. (2017), "Reuse of waste activated sludge for textile dyeing wastewater treatment by biosorption: performance optimization and comparison", Water Environ. J., 31(1), 105-112. https://doi.org/10.1111/wej.12218.   DOI
37 Abdelhameed, R. M. and Emam, H. E. (2019), "Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater", J. Colloid Interface Sci., 552, 494-505. https://doi.org/10.1016/j.jcis.2019.05.077.   DOI
38 Abdelhameed, R. M., el-deib, H. R., El-Dars, F. M. S. E., Ahmed, H.B. and Emam, H.E. (2018), "Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-$NH_2$@Natural Fabric Composites", Industrial Eng. Chem. Res., 57(44), 15054-15065. https://doi.org/10.1021/acs.iecr.8b03936.   DOI
39 Abdelhameed, R. M., El-Zawahry, M. and Emam, H.E. (2018), "Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics", Polymer, 155, 225-234. https://doi.org/10.1016/j.polymer.2018.09.030.   DOI