• 제목/요약/키워드: microelectrode

검색결과 141건 처리시간 0.02초

Effect of Dopamine on the $Ca^{2+}\;-dependent\;K^+\;currents$ in Isolated Single Gastric Myocytes of the Guinea-pig

  • Rhee, Poong-Lyul;Lee, Sang-Jin;Kim, Sung-Joon;So, In-Suk;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제27권2호
    • /
    • pp.139-150
    • /
    • 1993
  • We have reported that dopamine potentiates spontaneous contractions dose-dependently in guinea-pig antral circular muscle strips (Hwang et al, 1991). To clarify the underlying excitatory mechanism of dopamine on the gastric smooth muscle, the effects of dopamine on voltage-dependent $Ca^{2+}\;currents\;and\;Ca^{2+}\;-dependent\;K^+\;currents$ were observed in enzymatically dispersed guinea-pig gastric myocytes using the whole-cell voltage-clamp technique. Experiments were also done using isometric tension recording and conventional intracellular microelectrode techniques. 1) The effect of dopamine on the spontaneous contraction of antral circular muscle strips of the guinea-pig was excitatory in a dose-dependent manner, and was blocked by phentolamine, an ${\alpha}-adrenoceptor$ blocker. 2) The slow waves were not changed by dopamine. 3) The voltage-operated inward $Ca^{2+}$ current was not influenced by dopamine. 4) The $Ca^{2+}\;-dependent\;K^+$ outward current, which might reflect the changes of intracellular calcium concentration, was enhanced by dopamine. This effect was abolished by phentolamine. 5) The enhancing effect of dopamine on the $Ca^{2+}\;-dependent\;K^+$ current disappeared with heparin which is known to block the action of $InsP_3$. From these results, it is suggested that dopamine acts via $InsP_3-mediated\;Ca^{2+}$ mobilization from intracellular stores and such action potentiates the spontaneous contraction of guinea-pig gastric smooth muscle.

  • PDF

Endoplasmic Reticulum Ca2+ Store: Regulation of Ca2+ Release and Reuptake by Intracellular and Extracellular Ca2+ in Pancreatic Acinar Cells

  • Kang, Yun Kyung;Park, Myoung Kyu
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.268-278
    • /
    • 2005
  • We investigated the effect of cytosolic and extracellular $Ca^{2+}$ on $Ca^{2+}$ signals in pancreatic acinar cells by measuring $Ca^{2+}$ concentration in the cytosol($[Ca^{2+}]_c$) and in the lumen of the ER($[Ca^{2+}]_{Lu}$). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released $Ca^{2+}$ mainly from the basolateral ER-rich part of the cell. The rate of $Ca^{2+}$ release from the ER was highly sensitive to the buffering of $[Ca^{2+}]_c$ whereas ER $Ca^{2+}$ refilling was enhanced by supplying free $Ca^{2+}$ to the cytosol with $[Ca^{2+}]_c$ clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM $Ca^{2+}$. Elevation of extracellular $Ca^{2+}$ to 10 mM from 1 mM raised resting $[Ca^{2+}]_c$ slightly and often generated $[Ca^{2+}]_c$ oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular $Ca^{2+}$-sensing receptors linked to phospholipase C that mobilize $Ca^{2+}$ from the ER, exposure of cells to 10 mM $Ca^{2+}$ did not decrease $[Ca^{2+}]_{Lu}$ but rather raised it. From these findings we conclude that 1) ER $Ca^{2+}$ release is strictly regulated by feedback inhibition of $[Ca^{2+}]_c$, 2) ER $Ca^{2+}$ refilling is determined by the rate of $Ca^{2+}$ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular $Ca^{2+}$-induced $[Ca^{2+}]_c$ oscillations appear to be triggered not by activation of extracellular $Ca^{2+}$-sensing receptors but by the ER sensitised by elevated $[Ca^{2+}]_c$ and $[Ca^{2+}]_{Lu}$.

폴리(에테르)사슬이 결합된 Cobalt(II)bipyridine 착물의 합성과 전기화학적 성질 (Electrochemical Properties and Synthesis of Poly(ether)tailed Cobalt(II)bipyridine Complex)

  • 김일광;전일철
    • 분석과학
    • /
    • 제9권3호
    • /
    • pp.292-301
    • /
    • 1996
  • 산화환원반응 탐침제로, poly ether 꼬리가 결합된 Cobalt(II)bipyridine 착물을 합성 하였고, 이들 화합물의 느린 확산계수와 불균일 전자이동을 설명하였다. $Co(bpy(ppgm)_2)_{3^-}(ClO_4)_2$에 전해질 $LiClO_4$가 혼합된 neat 상태의 산화반응에 대한 확산계수는 $1.5{\times}10^{-15}cm^2/s$ 였다. 이 화합물들의 불균일 전자이동 속도상수들은 확산계수와 관련이 있었다. 확산계수의 감소에 따라 속도상수(k)의 감소가 일어났다. 강한 이온쌍을 형성하는 $ClO{_4}^-$의 화합물은 약한 이온 쌍을 형성하는 $CF_3COO^-$ 화합물보다 확산계수가 훨씬 작았다.

  • PDF

Outcome of Pallidal Deep Brain Stimulation in Meige Syndrome

  • Ghang, Ju-Young;Lee, Myung-Ki;Jun, Sung-Man;Ghang, Chang-Ghu
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권2호
    • /
    • pp.134-138
    • /
    • 2010
  • Objective : Meige syndrome is the combination of blepharospasm and oromandibular dystonia. We assessed the surgical results of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with medically refractory Meige syndrome. Methods : Eleven patients were retrospectively analyzed with follow-ups of more than 12 months. The mean follow-up period was $23.1{\pm}6.4$ months. The mean age at time of surgery was $58.0{\pm}7.8$ years. The mean duration of symptoms was $8.7 {\pm}7.6$ years. DBS electrodes were placed under local anesthesia using microelectrode recording and stimulation. After $2.4{\pm}1.3$ days of trial tests, the stimulation device was implanted under general anesthesia. Patients were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Results : BFMDRS total movement scores improved by 59.8%, 63.5%, 74.1%, 74.5%, and 85.5% during the immediate postoperative period of test stimulation, 3, 6, 12, and 24 months (n = 5) after surgery, respectively. The BFMDRS total movement scores were reduced gradually and the results reached statistical significance in the postoperative period (test period, p < 0.001; 3 months, p < 0.001; 6 months, p = 0.003; 12 months, p < 0.001; 24 months, p = 0.042). There was no statistical difference between 12 months and 24 months. BFM subscores improved by 63.3% for the eyes, 80.9% for the mouth, 68.4% for speech/swallowing, and 87.9% for the neck at 12 months after surgery. The adverse effects were insignificant. Conclusion : The bilateral GPi-DBS can be effective for the treatment of intractable Meige syndrome without significant side effects.

실시간 박테리아 감지를 위한 정전용량방식의 MEMS 바이오센서 (MEMS based capacitive biosensor for real time detection of bacterial growth)

  • 서혜경;임대호;임미화;김종백;신전수;김용준
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.195-202
    • /
    • 2008
  • A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.

The Role of Somatostatin in Nociceptive Processing of the Spinal Cord in Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Jun-Ho;Lee, Ji-Hye;Kim, Sang-Jeong;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.365-373
    • /
    • 1999
  • Somatostatin (SOM) is one of the major neuropeptides in dorsal root ganglion cells, but its role in spinal nociceptive process has not been well known. In present study we aimed to investigate the effect of SOM on the response of dorsal horn neurons to the various types of peripheral nociceptive stimuli in anesthetized cats. Using carbon-filament microelectrode, the single cell activities of wide dynamic range neurons were recorded from the lumbosacral enlargement after noxious mechanical (squeeze), thermal (radiant heat lamp) and cold (dry ice) stimulation to the receptive field. Sciatic nerve was stimulated electrically to evoke $A\;{\delta}-$ and C-nociceptive responses. SOM analogue, octreotide $(10\;{\mu}g/kg),$ was applied intravenously and the results were compared with those of morphine (2 mg/kg, MOR). Systemic SOM decreased the cellular responses to the noxious heat and the mechanical stimulation, but increased those to the cold stimulation. In the responses to the electric stimuli of sciatic nerve, $A\;{\delta}-nociceptive$ response was increased by SOM, while C-nociceptive response was decreased. On the other hand, MOR inhibited the dorsal horn cell responses to all the noxious stimuli. From the above results, it is concluded that SOM suppresses the transmission of nociceptive heat and mechanical stimuli, especially via C-fiber, while it facilitates those of nociceptive cold stimuli via $A\;{\delta}-fiber$.

  • PDF

The Contractile and Electrical Responses of Guinea-pig's Gastric Smooth Muscle to Serotonin

  • Lee, Sang-Jin;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.133-146
    • /
    • 1991
  • In order to elucidate systematically the effects of serotonin on gastric motility of guinea-pig, the contractile and electrical responses to serotonin were recorded using four kinds of muscle strips prepared from antral circular, antral longitudinal, fundic circular, and fundic longitudinal muscles. Experiments were performed using various methods including isometric contraction recording, transmural electrical field stimulation, junction potential recording, intracellular microelectrode technique, and partition stimulation method. The results were as follows: 1) The effect of serotonin on spontaneous contractions was inhibitory in the circular muscle strips of the antrum and fundus, while it was excitatory in the longitudinal muscle strips of the antrum and fundus. Serotonin changed mainly phasic contractions of both the circular and longitudinal muscle strips in the antrum, while it changed mainly tonic contractions of both the circular and longitudinal muscle strips in the fundus. 2) On the contractions induced by transmural nerve stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum, but it increased them in the other three groups of muscle strips(antral longitudinal, fundic circular, and fundic longitudinal). 3) On the contractions induced by direct muscle stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum and fundus. 4) In the fundic circular muscle strips serotonin potentiated excitatory junction potentials (EJPs), and in the antral circular muscle strips it evoked EJPs after inhibitory junction potentials(IJPS). 5) In the antral circular muscle strips serotonin did not affect the slow wave even at the disappearance of spontaneous contractions. On the contrary it increased the amplitude of the slow wave, when the spike component was potentiated and the second component was inhibited. 6) In the antral circular muscle strips the membrane potential was slightly hyperpolarized, but the membrane resistance was not changed. From the above results following conclusions could be made. 1) Serotonin inhibits spontaneous contractions of the circular muscle layer and it increases those of the longitudinal one, irrespective of the gastric region. 2) In the guinea-pig stomach there exists a serotoninergic facilitatory neuromodulation system which exerts its effect on cholinergically mediated contraction. 3) The excitation-contraction decoupling was observed in the effect of serotonin.

  • PDF

Voltage-Dependent Inactivation of Calcium Currents in the Mouse Eggs

  • Park, Young-Geun;Yang, Young-Seon;Yum, Myung-Kul;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.125-131
    • /
    • 1991
  • Inactivation properties of Ca current in the unfertilized eggs of mouse were studied by using the whole cell voltage clamp technique and single microelectrode voltage clamp technique. Membrane potential was held at -80 mV and step depolarization was applied from -50 mV to 50 mV for $200{\sim}500\;ms$. Peak of inward Ca currents was $-2{\sim}-4\;nA$ at a membrane Potentials from -20 mV to 0 mV and outward currents were not observed within the membrane voltage range studied $(-50{\sim}50\;mV)$. Inward currents were fully inactivated within 200 ms after the onset of step depolarization. As the membrane became depolarized, time constant of inactivation (${\tau}$) was decreased but remained around $20{\sim}30\;ms$ beyond 10 mV. When $Ca^{2+}$ was used as a charge earlier, inactivation of inward $Ca^{2+}$ current also occured and time course of inactivation was similar to that of $Ca^{2+}$ currents as charge carrier. In the bathing solution containing high potassium $(131\;mM\;K^+)$, process of inactivation was not changed except a parallel decrease of value for the entire range of membrane potential. Steady-state inactivation of the $current(h_{\infty})$ obtained from the double pulse experiment showed the voltage-dependent change. These results suggested that inactivation of Ca currents in the unfertilized eggs of mouse was voltage-dependent.

  • PDF

Neurotensin Enhances Gastric Motility in Antral Circular Muscle Strip of Guinea-pig

  • Koh, Tae-Yong;Kim, Sung-Joon;Lee, Sang-Jin;Kang, Tong-Mook;Jun, Jae-Yeoul;Sim, Jae-Hoon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.227-234
    • /
    • 2000
  • Many reports suggest that neurotensin (NT) in the gastrointestinal tract may play a possible role as a neurotransmitter, a circulating hormone, or a modulator of motor activity. NT exerts various actions in the intestine; it produces contractile and relaxant responses in intestinal smooth muscle. This study was designed to investigate the effect of NT on motility of antral circular muscle strips in guinea-pig stomach. To assess the role of $Ca^{2+}$ influx in underlying mechanism, slow waves were simultaneously recorded with spontaneous contractions using conventional intracellular microelectrode technique. At the concentration of $10^{-7}$ M, where NT showed maximum response, NT enhanced the magnitude $(863{\pm}198%,\;mean\;SEM,\;n=13)$ and the frequency $(154{\pm}10.3%,\;n=11)$ of spontaneous contractions. NT evoked a slight hyperpolarization of membrane potential, tall and steep slow waves with abortive spikes $(278{\pm}50%,\;n=4).$ These effects were not affected by atropine $(2\;{\mu}M),$ guanethidine $(2\;{\mu}M)$ and tetrodotoxin (0.2μM). NT-induced contractile responses were abolished in $Ca^{2+}-free$ solution and reduced greatly to near abolition by $10\;{\mu}M$ of verapamil or 0.2 mM of $CdCl_2.$ Verapamil attenuated the effects of NT on frequency and amplitude of the slow waves. Taken together, these results indicate that NT enhances contractility in guinea-pig gastric antral circular muscle and $Ca^{2+}$ influx through the voltage-operated $Ca^{2+}$ channel appears to play an important role in the NT-induced contractile mechanism.

  • PDF

Electrophysiological and Mechanical Characteristics in Human Ileal Motility: Recordings of Slow Waves Conductions and Contractions, In vitro

  • Ryoo, Seung-Bum;Oh, Heung-Kwon;Moon, Sang Hui;Choe, Eun Kyung;Yu, Sung A;Park, Sung-Hye;Park, Kyu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.533-542
    • /
    • 2015
  • Little human tissue data are available for slow waves and migrating motor complexes, which are the main components of small bowel motility. We investigated the electrophysiological and mechanical characteristics of human ileal motility, in vitro. Ileum was obtained from patients undergoing bowel resection. Electrophysiological microelectrode recordings for membrane potential changes and mechanical tension recordings for contraction from smooth muscle strips and ileal segments were performed. Drugs affecting the enteric nervous system were applied to measure the changes in activity. Slow waves were detected with a frequency of 9~10/min. There were no cross-sectional differences in resting membrane potential (RMP), amplitude or frequency between outer and inner circular muscle (CM), suggesting that electrical activities could be effectively transmitted from outer to inner CM. The presence of the interstitial cell of Cajal (ICC) at the linia septa was verified by immunohistochemistry. Contractions of strips and segments occurred at a frequency of 3~4/min and 1~2/min, respectively. The frequency, amplitude and area under the curve were similar between CM and LM. In segments, contractions of CM were associated with LM, but propagation varied with antegrade and retrograde directions. Atropine, $N^W$-oxide-L-arginine, and sodium nitroprusside exhibited different effects on RMP and contractions. There were no cross-sectional differences with regard to the characteristics of slow waves in CM. The frequency of contractions in smooth muscle strips and ileal segments was lower than slow waves. The directions of propagation were diverse, indicating both mixing and transport functions of the ileum.