Endoplasmic Reticulum Ca2+ Store: Regulation of Ca2+ Release and Reuptake by Intracellular and Extracellular Ca2+ in Pancreatic Acinar Cells

  • Kang, Yun Kyung (Department of Pathology, Inje University Seoul Paik Hospital) ;
  • Park, Myoung Kyu (Department of Physiology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute)
  • Received : 2004.12.23
  • Accepted : 2005.01.03
  • Published : 2005.04.30

Abstract

We investigated the effect of cytosolic and extracellular $Ca^{2+}$ on $Ca^{2+}$ signals in pancreatic acinar cells by measuring $Ca^{2+}$ concentration in the cytosol($[Ca^{2+}]_c$) and in the lumen of the ER($[Ca^{2+}]_{Lu}$). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released $Ca^{2+}$ mainly from the basolateral ER-rich part of the cell. The rate of $Ca^{2+}$ release from the ER was highly sensitive to the buffering of $[Ca^{2+}]_c$ whereas ER $Ca^{2+}$ refilling was enhanced by supplying free $Ca^{2+}$ to the cytosol with $[Ca^{2+}]_c$ clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM $Ca^{2+}$. Elevation of extracellular $Ca^{2+}$ to 10 mM from 1 mM raised resting $[Ca^{2+}]_c$ slightly and often generated $[Ca^{2+}]_c$ oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular $Ca^{2+}$-sensing receptors linked to phospholipase C that mobilize $Ca^{2+}$ from the ER, exposure of cells to 10 mM $Ca^{2+}$ did not decrease $[Ca^{2+}]_{Lu}$ but rather raised it. From these findings we conclude that 1) ER $Ca^{2+}$ release is strictly regulated by feedback inhibition of $[Ca^{2+}]_c$, 2) ER $Ca^{2+}$ refilling is determined by the rate of $Ca^{2+}$ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular $Ca^{2+}$-induced $[Ca^{2+}]_c$ oscillations appear to be triggered not by activation of extracellular $Ca^{2+}$-sensing receptors but by the ER sensitised by elevated $[Ca^{2+}]_c$ and $[Ca^{2+}]_{Lu}$.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Adkins, C. E. and Taylor, C. W. (1999) Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic $Ca^{2+}$. Curr. Biol. 9, 1115-1118 https://doi.org/10.1016/S0960-9822(99)80481-3
  2. Alvarez, J., Montero, M., and Garcia-sancho, J. (1999) Subcellular $Ca^{2+}$ dynamics. News Physiol. Sci. 14, 161-168
  3. Bezprozvanny, I., Watras, J., and Ehrlich, B. E. (1991) Bellshaped calcium-response curves of Ins(1,4,5)P3- and calciumgated channels from endoplasmic reticulum of cerebellum. Nature 351, 751-754 https://doi.org/10.1038/351751a0
  4. Brown, E. M., Gamba, G., Riccardi, D., Lombardi, M., Butters, R., et al. (1993) Cloning and characterization of an extracellular $Ca^{2+}$-sensing receptor from bovine parathyroid. Nature 366, 575-580 https://doi.org/10.1038/366575a0
  5. Bruce, J. I., Yang, X., Ferguson, C. J., Elliott, A. C., Steward, M. C., et al. (1999) Molecular and functional identification of a $Ca^{2+}$ (Polyvalent Cation)-sensing receptor in rat pancreas. J. Biol. Chem. 274, 20561-20568 https://doi.org/10.1074/jbc.274.29.20561
  6. Corbett, E. F. and Michalak, M. (2000) Calcium, a signaling molecule in the endoplasmic reticulum. TIBS 25, 307-311 https://doi.org/10.1016/S0968-0004(00)01588-7
  7. Fierro, L. and Parekh, A. B. (2000) Substantial depletion of the intracellular $Ca^{2+}$ stores is required for macroscopic activation of the $Ca^{2+}$ release-activated $Ca^{2+}$ current in rat basophilic leukaemia cells. J. Physiol. 522, 247-257 https://doi.org/10.1111/j.1469-7793.2000.t01-1-00247.x
  8. Gerasimenko, O. V., Gerasimenko, J. V., Belan, P. V., and Petersen, O. H. (1996) Inositol trisphosphate and cyclic ADP-ribosemediated release of $Ca^{2+}$ from single isolated pancreatic zymogen granules. Cell 84, 473-480 https://doi.org/10.1016/S0092-8674(00)81292-1
  9. Gorelick, F. S. and Jamieson, J. D. (1994) The pancreatic acinar cells: structure-function relationships; in Physiology of the Gastrointestinal Tract, Johnson, L. R. (ed.), 3rd ed., pp. 1353- 1376, Raven Press, New York
  10. Groenendyk, J., Lynch, J., and Michalak, M. (2004) Calreticulin, $Ca^{2+}$, and calcineurin-signaling from the endoplasmic reticulum. Mol. Cells 17, 383-389
  11. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85-100 https://doi.org/10.1007/BF00656997
  12. Hofer, A. M. and Machen, T. E. (1993) Technique for in situ measurement of calcium in intracellular inositol 1,4,5- trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. Proc. Natl. Acad. Sci. USA 90, 2598-2602
  13. Hofer, A. M. and Schulz, I. (1996) Quantification of intraluminal free [$Ca^{2+}$] in the agonist-sensitive internal calcium store using compartmentalized fluorescent indicators: some considerations. Cell Calcium 20, 235-242 https://doi.org/10.1016/S0143-4160(96)90029-9
  14. Hofer, A. M., Curci, S., Machen, T. E., and Schulz, I. (1996) ATP regulates calcium leak from agonist-sensitive internal calcium stores. FASEB J. 10, 302-308
  15. Hofer, A. M., Landolfi, B., Debellis, L., Pozzan, T., and Curci, S. (1998) Free [$Ca^{2+}$] dynamics measured in agonist-sensitive stores of single living intact cells: a new look at the refilling process. EMBO J. 17, 1986-1995 https://doi.org/10.1093/emboj/17.7.1986
  16. Ito, K., Miyashita, Y., and Kasai, H. (1997) Micromolar and submicromolar $Ca^{2+}$ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J. 16, 242-251 https://doi.org/10.1093/emboj/16.2.242
  17. Ito, K., Miyashita, Y., and Kasai, H. (1999) Kinetic control of multiple forms of $Ca^{2+}$ spikes by inositol trisphosphate in pancreatic acinar cells. J. Cell Biol. 146, 405-413 https://doi.org/10.1083/jcb.146.2.405
  18. Kasai, H. (1999) Comparative biology of $Ca^{2+}$-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci. 22, 88-93 https://doi.org/10.1016/S0166-2236(98)01293-4
  19. Kern, H. F. (1993) Fine structure of the human exocrine pancreas; in The Pancreas: Biology, Pathobiology and Disease, Go, V. L. W. (ed.), 2nd ed., pp. 9-19, Raven Press, New York
  20. Kim, J. Y., Kim, K. H., Lee, J. A., Namkung, W., Sun, A. Q., et al. (2002) Transporter-mediated bile acid uptake causes $Ca^{2+}$- dependent cell death in rat pancreatic acinar cells. Gastroenterology 22, 1941-1953
  21. Lee, K. K., Uhm, D. Y., and Park, M. K. (2003) Low affinity cholecystokinin receptor inhibits cholecystokinin- and bombesininduced oscillations of cytosolic $Ca^{2+}$ concentration. FEBS Lett. 538, 134-138 https://doi.org/10.1016/S0014-5793(03)00165-0
  22. Mogami, H., Nakano, K., Tepikin, A. V., and Petersen, O. H. (1997) $Ca^{2+}$ flow via tunnels in polarized cells: recharging of apical $Ca^{2+}$ stores by focal $Ca^{2+}$ entry through basal membrane patch. Cell 88, 49-55 https://doi.org/10.1016/S0092-8674(00)81857-7
  23. Mogami, H., Tepikin, A. V., and Petersen, O. H. (1998) Termination of cytosolic $Ca^{2+}$ signals: $Ca^{2+}$ reuptake into intracellular stores is regulated by the free $Ca^{2+}$ concentration in the store lumen. EMBO J. 17, 435-442 https://doi.org/10.1093/emboj/17.2.435
  24. Mogami, H., Gardner, J., Gerasimenko, O. V., Camello, P., Petersen, O. H., et al. (1999) Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. J. Physiol. 518, 463-467 https://doi.org/10.1111/j.1469-7793.1999.0463p.x
  25. Montero, M., Barrero, M. J., and Alvarez, J. (1997) [$Ca^{2+}$] microdomains control agonist-induced $Ca^{2+}$ release in intact HeLa cells. FASEB J. 11, 881-885
  26. Parekh, A. and Penner, R. (1997) Store depletion and calcium influx. Physiol. Rev. 77, 901-930
  27. Park, M. K., Tepikin, A. V., and Petersen, O. H. (1999) The relationship between acetylcholine-evoked $Ca^{2+}$-dependent current and the $Ca^{2+}$ concentrations in the cytosol and the lumen of the endoplasmic reticulum in pancreatic acinar cells. Pflugers Archiv. 438, 760-765 https://doi.org/10.1007/s004240051103
  28. Park, M. K., Petersen, O. H., and Tepikin, A. V. (2000) The endoplasmic reticulum as one continuous $Ca^{2+}$ pool: visualization of rapid $Ca^{2+}$ movements and equilibration. EMBO J. 19, 5729-5739 https://doi.org/10.1093/emboj/19.21.5729
  29. Park, M. K., Ashby, M. C., Erdemli, G., Petersen, O. H., and Tepikin, A. V. (2001a) Perinuclear, perigranular and subplasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 20, 1863- 1874 https://doi.org/10.1093/emboj/20.8.1863
  30. Park, M. K., Lomax, R. B., Tepikin, A. V., and Petersen, O. H. (2001b) Local uncaging of caged $Ca^{2+}$ reveals distribution of $Ca^{2+}$-activated Cl- channels in pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 98, 10948-10953
  31. Park, M. K., Tepikin, A. V., and Petersen, O. H. (2002) What can we learn about cell signalling by combining optical imaging and patch clamp techniques? Pflugers Archiv. 444, 305-316 https://doi.org/10.1007/s00424-002-0832-y
  32. Park, M. K., Lee, M. S., and Petersen, O. H. (2004) Morphological and functional changes of dissociated single pancreatic acinar cells: testing the suitability of the single cell as a model for exocytosis and calcium signaling. Cell Calcium 35, 367-379 https://doi.org/10.1016/j.ceca.2003.10.003
  33. Petersen, O. H., Petersen, C. C. H., and Kasai, H. (1994) Calcium and hormone action. Annu. Rev. Physiol. 56, 297-319 https://doi.org/10.1146/annurev.ph.56.030194.001501
  34. Petersen, O. H., Burdakov, D., and Tepikin, A. V. (1999) Polarity in intracellular calcium signalling. BioEssays 21, 851-860 https://doi.org/10.1002/(SICI)1521-1878(199910)21:10<851::AID-BIES7>3.0.CO;2-F
  35. Petersen, O. H., Tepikin, A. V., and Park, M. K. (2001) The endoplasmic reticulum: one continuous or several separate $Ca^{2+}$ stores? Trends Neurosci. 24, 271-276 https://doi.org/10.1016/S0166-2236(00)01787-2
  36. Pottorf, W. J. and Thayer, S. A. (2002) Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons. J. Neurochem. 83, 1002-1008 https://doi.org/10.1046/j.1471-4159.2002.01221.x
  37. Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. (1994) Molecular and cellular physiology of intracellular $Ca^{2+}$ stores. Physiol. Rev. 74, 595-636
  38. Racz, G. Z., Kittel, A., Riccardi, D., Case, R. M., Elliott, A. C., et al. (2002) Extracellular calcium sensing receptor in human pancreatic cells. Gut 51, 705-711 https://doi.org/10.1136/gut.51.5.705
  39. Raraty, M., Ward, J., Erdemli, G., Vaillant, C., Neoptolemos, J. P., et al. (2000) Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 97, 13126-13131
  40. Wileman, T., Kane, L. P., Carson, G. R., and Terhorst, C. (1991) Depletion of cellular calcium accelerates protein-degradation in the endoplasmic-reticulum. J. Biol. Chem. 266, 4500- 4507