• Title/Summary/Keyword: microdomain structure

Search Result 10, Processing Time 0.031 seconds

Formation of Incommensurate Phase in TiNiFe Processed by Self-propagating High Temperature Synthesis Method (고온자전 합성법에 의해 제조된 TiNiFe합금에서 Incommensurate 상의 형성)

  • Cho, Jae-Seob;Kim, Do-Hyang;Kim, Yong-Seog
    • Applied Microscopy
    • /
    • v.26 no.3
    • /
    • pp.379-388
    • /
    • 1996
  • Structure of premartensite in $Ti_{50}Ni_{49}Fe_1\;and\;Ti_{50}Ni_{50}$ prepared by self-propagating high temperature synthesis (SHS) method has been investigated by a detailed transmission electron microscopy. $Ti_{50}Ni_{49}Fe_1$ consists of microdomain area and needle type domain area. On the other hand, $Ti_{50}Ni_{50}$ consists of microdomain-free and microdomain area, and needle type domain area. Various types of extra superreflections, such as 1/2<100>, 1/2<110> and 1/4<210> type superreflection have been observed in the selected area electron diffractions from microdomain area. Such extra superreflections are due to transformation from B2 structure to distorted B2 structure or premartensite. The present study shows that incommensurate phase forms as an intermediate phase during martensitic transformation. Particularly, in Fe-free $Ti_{50}Ni_{50}$, two types of matrix phases have been observed, microdomain and microdomain-free area. Types of extra superreflections in $Ti_{50}Ni_{50}$ are different from those in $Ti_{50}Ni_{49}Fe_1$, i.e. 1/7<321> type superreflections have been observed, instead of 1/2<110>, 1/2<100>, 1/4<210> types in $Ti_{50}Ni_{49}Fe_1$.

  • PDF

Morphology and Crystallization in Mixtures of Poly(methyl methacrylate)-Poly(pentafluorostyrene)-Poly(methyl methacrylate) Triblock Copolymer and Poly(vinylidene fluoride)

  • Kim, Geon-Seok;Kang, Min-Sung;Choi, Mi-Ju;Kwon, Yong-Ku;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.757-762
    • /
    • 2009
  • The micro domain structures and crystallization behavior of the binary blends of poly(methyl methacrylate)-b-poly(pentafluorostyrene)-b-poly(methyl methacrylate) (PMMA-PPFS-PMMA) triblock copolymer with a low molecular weight poly(vinylidene fluoride) (PVDF) were investigated by small-angle X-ray scattering (SAXS), small-angle light scattering (SALS), transmission electron microscopy (TEM), optical microscopy, and differential scanning calorimetry (DSC). A symmetric, PMMA-PPFS-PMMA triblock copolymer with a PPFS weight fraction of 33% was blended with PVDF in N,N-dimethylacetamide (DMAc). In the wide range of PVDF concentration between 10.0 and 30.0 wt%, PVDF was completely incorporated within the PMMA micro domains of PMMA-PPFS-PMMA without further phase separation on a micrometer scale. The addition of PVDF altered the phase morphology of PMMA-PPFS-PMMA from well-defined lamellar to disordered. The crystallization of PVDF significantly disturbed the domain structure of PMMA-PPFS-PMMA in the blends, resulting in a poorly-ordered morphology. PVDF displayed unique crystallization behavior as a result of the space constraints imposed by the domain structure of PMMA-PPFS-PMMA. The pre-existing microdomain structures restricted the lamellar orientation and favored a random arrangement of lamellar crystallites.

Control of Block Copolymer Microdomain: In-Situ and Real-Time SANS Studies of Polymerization-Induced Self-assembly of Block Copolymer Microdomain Structure

  • Koizumi, Satoshi;Yamauchi, Kazuhiro;Hasegawa, Hirokazu;Tanaka, Hirokazu;Motokawa, Ryuhei;Hashimoto, Takeji
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.71-72
    • /
    • 2006
  • We investigated a simultaneous living anionic polymerization process of isoprene (I) and 4styrene-d_8$ (S) in $benzene-d_6$ as a solvent with sec-buthyllithium as an initiator into polyisoprene(PI)-block-poly($styrene-d_8$)(PS) and the polymerization-induced molecular self-assembling process. This process was observed in-situ by time-resolved small-angle neutron scattering (SANS) experiment. The SANS profiles measured exhibited three time regions, where (i) the selective growth of PI chains occurs; (ii) the living chain ends switch from isoprenyllithium to styryllithium, and (iii) the SANS exhibited the polymerization induced disorder-to-order transition and order-to-order transition.

  • PDF

Microphase Separation and Crystallization in Binary Blends Consisting of Poly (methyl methacrylate)-block-Polystyrene Copolymer and Poly (vinylidene fluoride) (폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체/폴리(비닐리덴 플루오라이드) 블렌드의 미세 상분리와 결정화)

  • 김지선;이광희;조성무;류두열;김진곤
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.509-518
    • /
    • 2004
  • Microdomain structures and crystallization behavior of the binary blends consisting of an asymmetric block copolymer and a homopolymer were investigated using small-angle X-ray scattering (SAXS), optical micro scope (OM) and differential scanning calorimetry (DSC). Poly(methyl methacrylate)-block-polystyrene block copolymer (PMMA-b-PS) (weight fraction of PMMA =0.53) was mixed with low molecular weight poly(vinylidene fluoride) (PVDF). As the PVDF concentration was increased, the morphological change from a lamellar to a cylindrical structure occurred. The crystallization of PVDF significantly disturbed the orientation of the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF exhibited unique crystallization behavior due to the PMMA block which is preferentially miscible to PVDF and the space constraint imposed by the microdomains.

Antithrombogenicity of the Surfacfe of Poly(r-benzyl L-glutamate)/ Poly(ethylene glycol) Block Copolymer (Poly(r-benzyl L-glutamate)/ poly(ethylene glycol) block 공중합체 표면의 항혈전성에 관한 연구)

  • 조종수;송수창
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.199-204
    • /
    • 1987
  • ABA type block copolymers composed of r benzyle L-glutamate as the A component and poly(ethylene glycol) as the B components were obtained. Platelet adhesion on their sunfaces was investigated by a column elusion method to examine the effects of microdomain and secondary structure. The number of platelets adhered from whole blood and plasma rich platelet was smaller for the block copolymer systems than for the homopolymers. In the block copolymer system, the number of platelets adrered on their surfaces increased with increasing the content of PEG, that is, with decreasing of a-helix of block copolymers. A thick thrombus formation on the PBLG homopolymer was observed than block copolymer by scanning electron micrographs. The platelets adhesion increased with increasing the critical surface tension of the block copolymer.

  • PDF

Thermal Properties and Molecular Weight Variations due to Thermal History in Segmented Polyurethane Copolymer Blends (세그먼트된 폴리우레탄 블렌드의 열이력에 따른 열적 성질과 분자량 변화)

  • Cha, Yoon-Jong;Park, Dae-Woon;Kim, Hak-Lim;Lee, Han-Sup;Mah, Souk II;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • The variations of the glass transition, melting peaks, molecular weight and its distribution (polydispersity index: PI) due to the annealing temperature and time have been investigated using the thermoplastic segmented polyurethanes (TPUs) and its blends based on the contents of hard segment. The position of the melting peak and its magnitude have been increased with the annealing temperature and time. This may be arised from the rearrangement of the microdomain structure due to the long-range or short-range segmental motion, the order-disorder transition of non-crystalline microphase, the variation of the domain size or the degree of disorder of crystalline structure by given different thermal histories. The annealing temperature and time affected the molecular weights and polydispersity : the number and weight average molecular weights were increased, while the polydispersity index (PI) deceased at certain temperatures : for TPU-35 at $135^{\circ}C$, for TPU-44 at $170^{\circ}C$ and for TPU-53 at $180^{\circ}C$. The temperatures which give the variations in molecular weights and in PIs are consistent with the annealing temperatures of which $T_3$ solely exists for each sample. Thus it is suggested that the chain dissosiation and recombination simultaneously occur at the above mentioned temperature for each sample.

  • PDF

Behavior of Microdomains in Block Copolymer/Nanoparticle Nanocomposite Thin Films under Electric Field (공중합체/나노입자 복합체 박막 내 미세구조의 전기장 하에서의 거동)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.290-293
    • /
    • 2017
  • In this study, the fundamental behavior of microdomains in block copolymer/nanoparticle composite thin films was examined. In this experiment, polystyrene-b-poly(2-vinylpyridine) block copolymer and CdSe nanoparticles having a noncentrosymmetric property were employed. Composite hybrid thin films were produced by a spin coating method, and changes in the internal structure of composite thin films were monitored mainly by transmission electron microscopy. In summary, nanoparticles resided inside the thin film relatively intact, however, the block copolymer microdomains rotated parallel to the electric field direction. This study will be very helpful for future research activities regarding behaviors of heterogeneous composite materials under external fields.

Preparation of Aminosiloxane-grafted Poly(imidesiloxane) Copolymer and its Morphology and Adhesive Properties in Film (아미노실록산이 그래프팅된 폴리(이미드실록산) 공중합체 제조와 필름 모폴로지 및 점착 특성 연구)

  • Lee, Ji Mok;Kwon, Eunjin;Lee, Sunyoung;Jung, Hyun Min
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.547-552
    • /
    • 2013
  • Polyimide (PI) containing carboxyl functional group was prepared and reacted with diaminosiloxane during high temperature film casting. The morphology of resulting film was observed by using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), which revealed that globular 100 nm-sized PI domains and continuous polysiloxane phase were formed. X-ray photoelectron spectroscopy (XPS) study indicated that air-film interface mainly consisted of polysiloxane blocks. Poly(imidesiloxane) thin layer was thermostable until $400^{\circ}C$ and its pressure- sensitive adhesive property was retained up to $300^{\circ}C$. The comparative experiments revealed that grafting between carboxyl groups of polyimide and aminosiloxane was crucial for formation of microdomain structure and pressure-sensitive adhesive property.

Homopolymer Distribution in Polystyrene - Poly(methyl methacrylate) Diblock Copolymer (폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포)

  • Hong, Sung-Ho;Lee, Eun-Ji;Song, Kwon-Bin;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.