Microphase Separation and Crystallization in Binary Blends Consisting of Poly (methyl methacrylate)-block-Polystyrene Copolymer and Poly (vinylidene fluoride)

폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체/폴리(비닐리덴 플루오라이드) 블렌드의 미세 상분리와 결정화

  • 김지선 (인하대학교 나노시스템공학부) ;
  • 이광희 (인하대학교 나노시스템공학부) ;
  • 조성무 (KIST 고분자하이브리드연구센터) ;
  • 류두열 (포항공과대학교 화학공학과) ;
  • 김진곤 (포항공과대학교 화학공학과)
  • Published : 2004.11.01

Abstract

Microdomain structures and crystallization behavior of the binary blends consisting of an asymmetric block copolymer and a homopolymer were investigated using small-angle X-ray scattering (SAXS), optical micro scope (OM) and differential scanning calorimetry (DSC). Poly(methyl methacrylate)-block-polystyrene block copolymer (PMMA-b-PS) (weight fraction of PMMA =0.53) was mixed with low molecular weight poly(vinylidene fluoride) (PVDF). As the PVDF concentration was increased, the morphological change from a lamellar to a cylindrical structure occurred. The crystallization of PVDF significantly disturbed the orientation of the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF exhibited unique crystallization behavior due to the PMMA block which is preferentially miscible to PVDF and the space constraint imposed by the microdomains.

비대칭 블록 공중합체와 단일고분자로 구성된 블렌드의 미세 도메인 구조와 결정화 거동을 소각 X-선 산란, 광학 현미경 및 DSC를 사용하여 조사하였다. 본 연구에서는 폴리(메틸 메타크릴레이트) 블록의 무게 분률이 0.53인 폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체 (PMMA-b-PS)를 저분자량 폴리(비닐리덴 플루오라이드) (PVDF)와 혼합하였다. PVDF 함량 증가에 따라 블렌드 미세구조가 라멜라에서 실린더 구조로 전이하였으며, PVDF의 결정화는 결정화 이전에 형성된 미세구조의 배열을 교란시켜 질서도가 낮은 형태를 야기시켰다. 또한, PVDF 결정화 거동은 PMMA 블록과의 혼화성 및 미세 도메인에 의해 부가되는 공간적 제한에 큰 영향을 받았다.

Keywords

References

  1. T. Hashimoto, H. Tanaka, and H. Hasegawa, Macromolecules, 23, 4378 (1990)
  2. H. Tanaka, H. Hasegawa, and T. Hashimoto, Macromolecules, 24, 240 (1991)
  3. K. I. Winey, E. L. Thomas, and L. J. Fetters, Macromolecules, 34, 6182 (1991)
  4. R. J. Roe and W.C. Zin, Macromolecules, 17, 189 (1984)
  5. C. Prahsarn and A. M. Jamieson, Polymer, 38,1273 (1997)
  6. J. Bodycomb, D. Yamaguchi, and T. Hashimoto, Macromolecules, 33, 5178 (2000)
  7. L. Z. Liu, F. Yeh, and B. Chu, Macromolecules, 29, 5336 (1996)
  8. L. Z. Liu, H. Li, B. Jiang, and E. Zhou, Polymer, 35, 5511 (1994)
  9. L. Z. Liu, W. X. Hong, F. Su, and E. Zhou, Macromolecules, 30, 1363 (1997)
  10. L. Z. Liu and B. Chu, J. Polym. Sci. Part B, 37, 779 (1999)
  11. K. Sakurai, W. J. Macknight, D. J. Lohse, and D. N. Schulz, J. A. Sissano, J. S. Lin, and M. Agamalyan, Polymer, 37, 4443 (1996)
  12. K. Sakurai, W. J. Macknight, D. J. Lohse, D. N. Schulz, and J. A. Sissano, Macromolecules, 27, 4941 (1994)
  13. K. Sakurai, W. J. Macknight, D. J. Lohse, D. N. Schulz, and J. A. Sissano, Macromolecules, 26, 3236 (1993)
  14. L. Zhu, B. R. Mimnaugh, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsio, F. Yeh, and L. Liu, Polymer, 42, 9121 (2001)
  15. P. Rangarajan, C. F. Haisch, R. A. register, D. H. Adamson, and L.J. Fetters, Macromolecules, 30, 494 (1997)
  16. A. Buzarovska, S. Koseva, M. Cvetkovska, and E. Nedkov, Euro. Polym. J., 37, 141 (2001)
  17. G. Radonjic and I. Smit, J. Polym. Sci.: Part B, 39, 566 (2001)
  18. W. Lee, H. L. Chen, and T. L. Lin, J. Polym. Sci.: Part B, 40, 519 (2002)
  19. B. Lowenhaupt and G.P. Hellmann, Polymer, 32, 1065 (1991)
  20. T. Hashimoto, K. Kimishima, and H. Hasegawa, Macromolecules, 24, 5704 (1991)
  21. X. Lu, R. A. Weiss, Macromolecules, 26, 3615 (1993)
  22. M.C. Luyten, E. J. F. Bogels, G. O. R. Alberba va Ekenstein, G. ten Bras, B. E. Komanschek, and A. J. Ryan, Polymer, 38, 509 (1997)
  23. J. K. Kim, D. S. Jung, and J. H. Kim, Polymer, 34, 4613 (1993)
  24. H. ZHao, L. Liu, T. Tang, and B. Huang, Polym. J., 30, 775 (1998)
  25. H. K. Lee, C. K. Kang, and W. C. Zin, Polymer, 38, 1595 (1997)
  26. H. Sasaki, P. K. Bala, H. Yoshida, and E. Ito, Polymer, 36, 4805 (1995) https://doi.org/10.1016/00323-8619(59)92967-
  27. A. Linares and J. L. Acosta, Euro. Polym. J., 33, 467 (1997)
  28. A. Linares and J. L. Acosta, J. Appl. Polym. Sci., 67, 997 (1998)
  29. T. P. Russel, R. P. Hjelm, and P. A. Seeger, Macromolecules, 23, 890 (1990)
  30. A. V. G. Ruzette, P. Banerjee, A. M. Mayes, M. Pollard, T. P. Russel, R. Jerome, T. Slawecki, R. Hjelm, and P. Thiyagarajan, Macromolecules, 31, 8509 (1998)
  31. S. M. Jo, W. S. Lee, B. S. Ahn, K. Y. Park, K. A Kim, and I. S. Rhee Paeng, Polymer Bulletin, , 44, 1 (2000)
  32. U. Jeong, D. Y. Ryu, J. K. Kim, D. H. Kim, T. P. Russell, and C. J. Hawker, Adv. Mater., 15, 1247 (2003)
  33. U. Jeong, D. Y. Ryu, J. K. Kim, D. H. Kim, X. Wu, and T. P. Russell, Macromolecules, 36, 10126 (2003)
  34. U. Jeong, D. Y. Ryu, D. H. Kho, J. K. Kim, J. T. Goldbach, D. H. Kim, and T. P.Russell, Adv. Mater., 16, 533 (2004)
  35. J. Bolze, J. H. Kim, J. Y. Huang, S. Y. Rah, and H. S. Youn, Macromol. Res., 10, 2 (2002)
  36. I. W. Hamley, The Physics of Block Copolymers, Oxford Science Publications, 1998
  37. H.L. Chen, S.C. Hsiao, T.L. Lin, K. Yamauchi, H. Hasegawa, and T. Hashimoto, Macromolecules, 34, 671 (2001)
  38. H. L. Chen, J. C. Wu, T. L. Lin, and J. S. Lin, Macromolecules, 34, 6936 (2001) https://doi.org/10.1021/ma010552h
  39. J. B. Lando, H. G. Olf, and A. Peterlin, J. Polym. Sci.: A-1, 4, 941 (1966)