Browse > Article
http://dx.doi.org/10.14478/ace.2017.1010

Behavior of Microdomains in Block Copolymer/Nanoparticle Nanocomposite Thin Films under Electric Field  

Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University)
Publication Information
Applied Chemistry for Engineering / v.28, no.3, 2017 , pp. 290-293 More about this Journal
Abstract
In this study, the fundamental behavior of microdomains in block copolymer/nanoparticle composite thin films was examined. In this experiment, polystyrene-b-poly(2-vinylpyridine) block copolymer and CdSe nanoparticles having a noncentrosymmetric property were employed. Composite hybrid thin films were produced by a spin coating method, and changes in the internal structure of composite thin films were monitored mainly by transmission electron microscopy. In summary, nanoparticles resided inside the thin film relatively intact, however, the block copolymer microdomains rotated parallel to the electric field direction. This study will be very helpful for future research activities regarding behaviors of heterogeneous composite materials under external fields.
Keywords
microdomain; block copolymer; nanoparticle; thin film; electric field;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. J. Chiu, B. J. Kim, E. J. Kramer, and D. J. Pine, Control of nanoparticle location in block copolymers, J. Am. Chem. Soc., 127, 5036-5037 (2005).   DOI
2 J. Bae and S. H. Cha, Effect of nanoparticle surface functionality on microdomain orientation in block copolymer thin films under electric field, Polymer, 55, 2014-2020 (2014).   DOI
3 J. Bae, S. J. Park, O. S. Kwon, and J. Jang, The effect of nanoparticle on microdomain alignment in block copolymer thin films under an electric field, J. Mater. Sci., 49, 4323-4331 (2014).   DOI
4 S. Gupta, Q. Zhang, T. Emrick, and T. P. Russell, "Self-corralling" nanorods under an applied electric field, Nano Lett., 6, 2066-2069 (2006).   DOI
5 J. Bae, Electrohydrodynamic instability at surface of block copolymer/ titania nanorods thin film, Appl. Chem. Eng., 27, 205-209 (2016).   DOI
6 J. Bae, Electrohydrodynamic instabilities of polymer thin films: Filler effect, J. Ind. Eng. Chem., 18, 378-382 (2012).   DOI
7 I. Hamley, Nanostructure fabrication using block copolymers, Nanotechnology, 14, R39-R54 (2003).   DOI
8 H. Xiang, Y. Lin, and T. P. Russell, Electrically induced patterning in block copolymer films, Macromolecules, 37, 5358-5363 (2004).   DOI
9 J. Bae, E. Glogowski, S. Gupta, W. Chen, T. Emrick, and T. P. Russell, Effect of nanoparticles on the electrohydrodynamic instabilities of polymer/nanoparticle thin films, Macromolecules, 41, 2722-2726 (2008).   DOI
10 Y. Lin, A. Boker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. balazs, and T. P. Russell, Self-directed self-assembly of nanoparticle/copolymer mixtures, Nature, 434, 55-59 (2005).   DOI
11 B. J. Kim, G. H. Fredrickson, and E. J. Kramer, Effect of polymer ligand molecular weight on polymer-coated nanoparticle location in block copolymers, Macromolecules, 41, 436-443 (2008).   DOI
12 J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lammertink, and G. J. Vansco, Formation of a cobalt magnetic dot array via block copolymer lithography, Adv. Mater., 13, 1174-1178 (2003).