• Title/Summary/Keyword: microbiota

Search Result 553, Processing Time 0.027 seconds

Effects of Lactic Acid Bacteria, Storage Temperature and Period on Fermentation Characteristics, and in vitro Ruminal Digestibility of a Total Mixed Ration

  • Suyeon Kim;Tabita Dameria Marbun;Kihwan Lee;Jaeyong Song;Jungsun Kang;Chanho Lee;Duhak Yoon;Chan Ho Kwon;Eun Joong Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.276-285
    • /
    • 2022
  • This study evaluated the effect of lactic acid bacteria (LAB, a mixture of Enterococcus faecium and Lactobacillus plantarum) supplementation, the storage temperature, and storage period on the fermentation characteristics and in vitro ruminal digestibility of a total mixed ration (TMR). The TMR was prepared into two groups, namely, CON (control TMR without the LAB) and ML (supplementing a mixture of E. faecium and L. plantarum in the ratio of 1% and 2% (v/w), respectively). Both groups were divided and stored at 4℃ or 25℃ for 3, 7, and 14 d fermentation periods. Supplementing LAB to the TMR did not affect the chemical composition of TMR except for the lactate and acetate concentration. Storage temperatures affected (p<0.05) the chemical composition of the TMR, including pH, lactate, and acetate contents. The chemical composition of TMR was also affected (p<0.05) by the storage period. During in vitro rumen fermentation study, the ML treatment showed lower (p<0.05) dry matter digestibility at 24 h incubation with a higher pH compared to the CON. There was no difference in the in vitro dry matter digestibility (IVDMD) of TMR between the CON and ML treatment however, at 24 h, ML treatment showed lower (p<0.05) IVDMD with a higher pH compared to the CON. The effects of storage temperature and period on IVDMD were not apparent at 24 h incubation. In an in vivo study using Holstein steers, supplementing LAB to the basal TMR for 60 d did not differ in the final body weight and average daily gain. Likewise, the fecal microbiota did not differ between CON and ML. However, the TMR used for the present study did include a commercial yeast in CON, whereas ML did not; therefore, results were, to some extent, compromised in examining the effect of LAB. In conclusion, storage temperature and period significantly affected the TMR quality, increasing acetate and lactate concentration. However, the actual effects of LAB supplementation were equivocal.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Seasonal Changes in the Microbial Communities on Lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea

  • Woojung Lee;Min-Hee Kim;Juyeon Park;You Jin Kim;Eiseul Kim;Eun Jeong Heo;Seung Hwan Kim;Gyungcheon Kim;Hakdong Shin;Soon Han Kim;Hae-Yeong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.219-227
    • /
    • 2023
  • Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.

The oral microbiome of implant-abutment screw holes compared with the peri-implant sulcus and natural supragingival plaque in healthy individuals

  • MinKee Son;Yuri Song;Yeuni Yu;Si Yeong Kim;Jung-Bo Huh;Eun-Bin Bae;Won-Tak Cho;Hee Sam Na;Jin Chung
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.233-244
    • /
    • 2023
  • Purpose: An implant-supported prosthesis consists of an implant fixture, an abutment, an internal screw that connects the abutment to the implant fixture, and the upper prosthesis. Numerous studies have investigated the microorganisms present on the implant surface, surrounding tissues, and the subgingival microflora associated with peri-implantitis. However, there is limited information regarding the microbiome within the internal screw space. In this study, microbial samples were collected from the supragingival surfaces of natural teeth, the peri-implant sulcus, and the implant-abutment screw hole, in order to characterize the microbiome of the internal screw space in healthy subjects. Methods: Samples were obtained from the supragingival region of natural teeth, the peri-implant sulcus, and the implant screw hole in 20 healthy subjects. DNA was extracted, and the V3-V4 region of the 16S ribosomal RNA was sequenced for microbiome analysis. Alpha diversity, beta diversity, linear discriminant analysis effect size (LEfSe), and network analysis were employed to compare the characteristics of the microbiomes. Results: We observed significant differences in beta diversity among the samples. Upon analyzing the significant taxa using LEfSe, the microbial composition of the implant-abutment screw hole's microbiome was found to be similar to that of the other sampling sites' microbiomes. Moreover, the microbiome network analysis revealed a unique network complexity in samples obtained from the implant screw hole compared to those from the other sampling sites. Conclusions: The bacterial composition of the biofilm collected from the implant-abutment screw hole exhibited significant differences compared to the supra-structure of the implant. Therefore, long-term monitoring and management of not only the peri-implant tissue but also the implant screw are necessary.

Effect of partially replacing soybean meal with sunflower meal with supplementation of multienzymes on growth performance, carcass characteristics, meat quality, ileal digestibility, digestive enzyme activity and caecal microbiota in broilers

  • Yaqoob, Muhammad Umar;Yousaf, Muhammad;Imran, Safdar;Hassan, Safdar;Iqbal, Waqar;Zahid, Muhammad Umer;Ahmad, Naveed;Wang, Minqi
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1575-1584
    • /
    • 2022
  • Objective: An experiment was conducted to evaluate the effects of partially replacing soybean meal (SBM) with sunflower meal (SFM) with added exogenous multienzymes (MEs) on various biological parameters in broilers. Methods: One week-old, 400 broiler chicks were randomly divided into four treatments (control, 3SFM, 6SFM, and 9SFM) with 5 replicates/treatment (20 chicks/replicate). Control diet was without SFM and MEs, while diets of 3SFM, 6SFM, and 9SFM treatments were prepared by replacing SBM with SFM at levels of 3%, 6%, and 9%, respectively, and were supplemented with MEs (100 mg/kg). Feeding trial was divided into grower (8 to 21 day) and finisher phases (22 to 35 day). External marker method was used to measure the nutrient digestibility. At the end of trial, twenty birds (one birds per replicate) with similar body weight were slaughtered for samples collection. Results: No significant effect of dietary treatments was found on all parameters of growth performance and carcass characteristics, except relative weight of bursa. Weight (25.0 g) and length (15.80 cm) of duodenum were significantly (p<0.05) higher in 3SFM than control. Lowest (p<0.05) villus height/crypt depth ratio was found in 3SFM and 9SFM than control. Most of meat quality parameters remained unaffected, however, highest pH of breast meat (6.16) and thigh meat (6.44) were observed in 9SFM and 3SFM, respectively. Lowest (p<0.05) cook loss of thigh meat was found in 6SFM (31.76%). Ileal digestibility of crude protein was significantly (p<0.05) higher in 3SFM (72.35%) than control (69.46%). In addition, amylase (16.87 U/mg) and protease (85.18 U/mg) activities were significantly (p<0.05) higher in 3SFM than control. However, cecal microbial count remained unaffected. Conclusion: Partial replacement (up to 9%) of SBM with SFM, with added MEs can help to improve the nutrient digestibility, intestinal morphology, and digestive enzyme activities without affecting cecal microbial count and growth performance in broilers.

Effect of black soldier fly larvae as substitutes for fishmeal in broiler diet

  • Seyeon Chang;Minho Song;Jihwan Lee;Hanjin Oh;Dongcheol Song;Jaewoo An;Hyunah Cho;Sehyun Park;Kyeongho Jeon;Byoungkon Lee;Jeonghun Nam;Jiyeon Chun;Hyeunbum Kim;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1290-1307
    • /
    • 2023
  • This study investigated the effect of processed forms (defatted or hydrolyzed) of black soldier fly larvae (Hermetia illucens L., BSFL) as a protein substitute on broilers. Experiment 1 was a feeding experiment, and Experiment 2 was a metabolism experiment. In Experiment 1, a total of 120 day-old Arbor Acres broilers (initial body weight 39.52 ± 0.24 g) were used for 28 days. There were 8 replicate pens, and 5 broilers were assigned to each pen. In Experiment 2, a total of 36 day-old broilers (initial body weight 39.49 ± 0.21 g) were used for the metabolism trial. There were 2 broilers in a metabolism cage and six replicate cages per treatment. The dietary treatments were as follows: a basal diet (CON), a basal diet without fishmeal and substitute with defatted BSFL (T1), a basal diet without fishmeal and a substitute with hydrolyzed BSFL (T2). In Experiment 1, during the entire experimental period, the T2 group significantly increased (p < 0.05) body weight gain and feed intake compared to the CON and T1 groups. The feed conversion ratio showed a lower tendency (p = 0.057) in the T2 group than in the CON and T1 groups. At 2 weeks, the CON and T2 groups were significantly higher (p < 0.05) crude protein (CP) digestibility than the T1 group. At 4 weeks, the total protein level significantly increased (p < 0.05) in the CON and T2 groups compared to the T1 group. In Experiment 2, the CP digestibility significantly increased (p < 0.05) in the T2 group compared to the CON and T1 group at weeks 2 and 4. At week 4 amino acid digestibility, the T2 group significantly increased (p < 0.05) lysine, methionine, tryptophan, and glycine digestibility compared to the T1 group. There was no difference in fecal microbiota among the treatment groups. In conclusion, feeding hydrolyzed BSFL as a fishmeal substitute in broiler diets improved growth performance, CP digestibility, and specific amino acid digestibility. Therefore, it is considered that hydrolyzed BSFL in broiler diets can be sufficiently used as a new protein source.

Determining the doses of probiotics for application in Scylla tranquebarica (Fabricius 1798) larvae to produce crablet

  • Gunarto, Gunarto;Yustian Rovi Alfiansah;Muliani Muliani;Bunga Rante Tampangalo;Herlinah Herlinah;Nurbaya Nurbaya;Rosmiati Rosmiati
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.180-194
    • /
    • 2024
  • Mass mortalities of mud crab Scylla spp. larvae due to pathogenic Vibrio spp. outbreaks have frequently occurred in hatcheries. To overcome this problem, probiotics containing Bacillus subtilis bacteria are applied to inhibit pathogenic ones. We tested different doses of probiotic-containing B. subtilis (108 CFU/g) on the Scylla tranquebarica larvae and investigated the microbiota population, including Vibrio. Water quality, larvae development, and crablet production were also monitored. The recently hatched larvae were grown in twelve conical fiber tanks filled with 200 L sterile seawater, with a salinity of 30 ppt at a stocking density of 80 ind/L. Four different doses of probiotics were applied in the larvae rearing, namely, A = 2.5 mg/L, B = 5 mg/L, C = 7.5 mg/L, and D = 0 mg/L, with three replicates. Next-generation sequencing analysis was used to obtain the abundance of microbes in the whole body of megalopa and the water media for larvae rearing after applying probiotics. Sixteen Raw Deoxyribonucleic Acid samples (eight from a whole body of megalopa extraction from four treatments of probiotics defined as A, B, C, D, and eight from water media extraction from four treatments of probiotic defined as E, F, G, H) were prepared. Then, they were sent to the Genetics Science Laboratory for NGS analysis. Ammonia, nitrite, total organic matter (TOM), larvae, and crablet production were monitored. Based on the Next-generation sequencing analysis data, the Vibrio spp. decreased significantly (p < 0.05) than control test (D) in megalopa-applied probiotics at the doses of 2.5 mg/L (A) and 7.5 mg/L (C) and in the water media for megalopa rearing treated with probiotics at the dosage of 5.0 mg/L (F). Ammonia in the zoea stage in B treatment and TOM in the zoea and megalopa stage in B and C treatments were decreased significantly (p < 0.05). It impacts the higher number of zoea survival in treatments B and C. Finally, it results in a significantly high crablet production in treatments B and C. Therefore, the dosage of 5 mg/L to 7.5 mg/L improves crablet S. tranquebarica production significantly.

Interactions between NCR+ILC3s and the Microbiome in the Airways Shape Asthma Severity

  • Jongho Ham;Jihyun Kim;Sungmi Choi;Jaehyun Park;Min-gyung Baek;Young-Chan Kim;Kyoung-Hee Sohn;Sang-Heon Cho;Siyoung Yang;Yong-Soo Bae;Doo Hyun Chung;Sungho Won;Hana Yi;Hye Ryun Kang;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Asthma is a heterogeneous disease whose development is shaped by a variety of environmental and genetic factors. While several recent studies suggest that microbial dysbiosis in the gut may promote asthma, little is known about the relationship between the recently discovered lung microbiome and asthma. Innate lymphoid cells (ILCs) have also been shown recently to participate in asthma. To investigate the relationship between the lung microbiome, ILCs, and asthma, we recruited 23 healthy controls (HC), 42 patients with non-severe asthma, and 32 patients with severe asthma. Flow cytometry analysis showed severe asthma associated with fewer natural cytotoxicity receptor (NCR)+ILC3s in the lung. Similar changes in other ILC subsets, macrophages, and monocytes were not observed. The asthma patients did not differ from the HC in terms of the alpha and beta-diversity of the lung and gut microbiomes. However, lung function correlated positively with both NCR+ILC3 frequencies and microbial diversity in the lung. Sputum NCR+ILC3 frequencies correlated positively with lung microbiome diversity in the HC, but this relationship was inversed in severe asthma. Together, these data suggest that airway NCR+ILC3s may contribute to a healthy commensal diversity and normal lung function.

Effects of Oligosaccharide-Supplemented Soy Ice Cream on Oxidative Stress and Fecal Microflora in Streptozotocin-Induced Diabetic Rats (당뇨쥐에서 올리고당 첨가 콩아이스크림이 산화스트레스와 장생태에 미치는 효과)

  • Her, Bo-Young;Sung, Hye-Young;Choi, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1536-1544
    • /
    • 2005
  • We have investigated physiological effects of soy ice cream with oligosaccharide on oxidative stress and fecal microflora in streptozotocin-induced diabetic rats. Parched soybean powder (7.6$\%$, w/w) substituted skimmed milk and cream, soybean oil (7.6$\%$, w/w) for milk oil, and fructooligosaccharide (9.5$\%$, w/w) for sucrose. Five types of ice cream were prepared: regular, oligosaccharide-supplemented regular, soy, oligosaccharide - supplemented soy, and oligosaccharide - supplemented black soybean ice cream . Freeze - dried ice cream was supplemented to AIN93-based diets at 30$\%$ (w/w) containing 6.5$\%$ soy and 4.5$\%$ fructooligosaccharide. Diabetes was induced by intramuscular administration of streptozotocin, and experimental diets were given for 4 weeks. Plasma concentration of thiobarbituric acid reactive substances (TBARS) was significantly increased in the diabetic rats compared with the normal rats, then was significantly decreased with feeding soy ice cream containing diet compared with regular ice cream containing diet among the diabetic groups. The levels of TBARS in liver were decreased in the rats that were fed either soy or oligosaccharide ice cream compared with the rats that were fed regular ice cream. Erythrocyte superoxide dismutase activity was significantly increased in the rats fed soy ice cream compared with the rats fed regular ice cream. Erythrocyte glutathione peroxidase and catalase activities were significantly increased in the rats fed black soybean ice cream. Fecal concentrations of Lactobacilli were significantly higher in the rats fed soy ice cream and oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. Fecal concentrations of Bifidobacteria were significantly higher in the rats fed oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. In conclusion, oligosaccharide- supplemented soy ice cream suppressed lipid peroxidation and improved the got microbiota in diabetic rats compared with milk-based regular ice cream.

Soil Chemical Property and Microbial Community under Organic and Conventional Radish Farming Systems (무 유기재배와 관행재배 토양의 화학성과 미생물 군집 비교)

  • Kang, Ho-Jun;Yang, Sung-Nyun;Song, Kwan-Cheol;Cho, Young-Yuen;Kim, Yu-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.