• Title/Summary/Keyword: microbiological safety and quality

Search Result 211, Processing Time 0.036 seconds

Diversity and Characteristics of the Meat Microbiological Community on Dry Aged Beef

  • Ryu, Sangdon;Park, Mi Ri;Maburutse, Brighton E.;Lee, Woong Ji;Park, Dong-Jun;Cho, Soohyun;Hwang, Inho;Oh, Sangnam;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.105-108
    • /
    • 2018
  • Beef was dry aged for 40-60 days under controlled environmental conditions in a refrigerated room with a relative humidity of 75%-80% and air-flow. To date, there is little information on the microbial diversity and characteristics of dry aged beef. In this study, we explored the effect of change in meat microorganisms on dry aged beef. Initially, the total bacteria and LAB were significantly increased for 50 days during all dry aging periods. There was an absence of representative foodborne pathogens as well as coliforms. Interestingly, fungi including yeast and mold that possess specific features were observed during the dry aging period. The 5.8S rRNA sequencing results showed that potentially harmful yeasts/molds (Candida sp., Cladosporium sp., Rhodotorula sp.) were present at the initial point of dry aging and they disappeared with increasing dry aging time. Interestingly, Penicillium camemberti and Debaryomyces hansenii used for cheese manufacturing were observed with an increase in the dry aging period. Taken together, our results showed that the change in microorganisms exerts an influence on the quality and safety of dry aged beef, and our study identified that fungi may play an important role in the palatability and flavor development of dry aged beef.

Combined Treatment on the Inactivation of Naturally Existing Bacteria and Escherichia coli O157:H7 Inoculated on Fresh-Cut Kale

  • Kang, Ji Hoon;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.219-225
    • /
    • 2017
  • An aqueous chlorine dioxide ($ClO_2$) treatment combined with highly activated calcium oxide (CaO) and mild heat was tested for inactivating naturally existing bacteria and Escherichia coli O157:H7 inoculated on fresh-cut kale. Kale samples were treated with different concentrations of $ClO_2$ (10, 30, and 50 ppm), CaO (0.01%, 0.05%, 0.1%, and 0.2%), and mild heat ($25^{\circ}C$, $45^{\circ}C$, $55^{\circ}C$, and $65^{\circ}C$) as well with combinations of 30 or 50 ppm $ClO_2$ and 0.2% CaO at $55^{\circ}C$ for 3 min. An increasing concentration of $ClO_2$ and CaO significantly reduced the microbial population compared with the control. In addition, mild heating at $55^{\circ}C$ elicited greater microbial reduction than the other temperatures. A combined treatment of 50 ppm $ClO_2$ and 0.2% CaO at $55^{\circ}C$ reduced the population of naturally existing bacteria on kale by 3.10 log colony forming units (CFU)/g, and the counts of E. coli O157:H7 were below the detection limit (1 log CFU/g). In addition, no significant differences in the Hunter color values were evident in any treatment during storage. Therefore, a combined treatment of $ClO_2$ and active CaO at $55^{\circ}C$ can be an effective sanitizing method to improve the microbiological safety of fresh-cut kale without affecting its quality.

Evaluation of Non-Thermal Decontamination Processes to Have the Equivalence of Thermal Process in Raw Ground Chicken

  • Park, Eunyoung;Park, Sangeun;Hwang, Jeong Hyeon;Jung, Ah Hyun;Park, Sung Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.142-152
    • /
    • 2022
  • The present study was aimed at examining the antibacterial effects of nonthermal decontamination processes, which are equivalent to thermal treatment, to ensure microbiological safety of raw ground chicken. Escherichia coli or Salmonella were inoculated into 25 g of raw ground chicken samples. The raw ground chicken samples were non-treated or treated with high hydrostatic pressure (HHP) at 500 MPa (1-7 min), light-emitting diode (LED) irradiation at 405 nm wavelength (30-120 min), and heat at 70℃, 90℃ (1-60 min), and 121℃ (1-15 min). E. coli and Salmonella cell counts were enumerated after treatments. Moreover, the color parameters of treated raw ground chicken were analyzed. HHP treatment reduced E. coli and Salmonella cell counts by more than 5 Log CFU/g and more than 6 Log CFU/g after 7 min and 1 min, respectively; these effects were equivalent to those of thermal treatment. However, LED irradiation reduced Salmonella cell counts by only 0.9 Log CFU/g after 90 min of treatment, and it did not reduce E. coli cell counts for 90 min. Compared with those of the non-treated samples, the ΔE (total color difference) values of the samples treated with HHP were high, whereas the ΔE values of the samples treated with LED irradiation were low (1.93-2.98). These results indicate that despite color change by HHP treatment, HHP treatment at 500 MPa could be used as a non-thermal decontamination process equivalent to thermal treatment.

Thermal Resistance Characteristics of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in a Multi-grain Soy Milk Product (레토르트 곡물 두유 내 Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes의 내열특성)

  • Kim, Nam Hee;Koo, Jae Myung;Rhee, Min Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.593-598
    • /
    • 2015
  • This study determined the thermal resistance of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in multi-grain soymilk and proposes processing conditions that meet the national standard for retort food products in Korea. D and z values were calculated from thermal inactivation kinetic curves after heating at 55, 60, and $65^{\circ}C$. The D value for B. cereus at $55^{\circ}C$ was the highest (22.8 min), followed by that for E. coli O157:H7 (18.8 min) and L. monocytogenes (17.6 min). At $60-65^{\circ}C$, the order was L. monocytogenes ($D_{60-65^{\circ}C}=3.4-0.9min$), E. coli O157:H7 (3.0-0.3 min), and B. cereus (1.2-0.3 min). The z values for these species were 5.2, 5.5, and $7.7^{\circ}C$, respectively. The Korean national standard for retort food products was achieved by thermal processing at $124{\pm}2^{\circ}C$ for 0.3-2.2 min. This study provides useful data for ensuring both the microbiological safety and product quality of multi-grain soymilk products.

Quality attributes and shelf-life of freshly cut beef coated with waste feather keratin-ginger starch composite enriched with avocado peel polyphenolic-rich extract

  • Olarewaju M Oluba;Samuel I Ojeaburu;Opeyemi A Bayo-Olorunmeke;Georgina Erifeta;Sunday J Josiah
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • The utilization of coatings composed of bio-based materials in the processing and preservation of meat presents an environmentally conscious, secure, cost-effective, and superior method for prolonging the storage life of meat while also preserving its nutritional value. In this study, changes in physical, chemical, and microbiological characteristics of freshly cut beef coated with distilled water (control) and keratin-starch composites (K-S) functionalized with 0.0-, 0.2-, 0.6-, and 1.0-mL avocado peel polyphenolic-rich extract (APPPE) kept at 4℃ for 12 days were evaluated periodically at 3-day interval using standard techniques. Keratin was extracted from waste feathers, while starch was obtained from ginger rhizomes. Following a 12-day storage period, beef coated with APPPE-enriched K-S composites exhibited a significant (p<0.05) improvement in shelf life by minimizing deteriorative changes in pH and color (as determined by metmyoglobin level) in addition to inhibiting oxidative changes in lipids (as determined by TBARS level) and proteins (protein carbonyl level) in comparison to control and K-S composite without APPPE. Furthermore, microbial growth was significantly (p<0.05) suppressed in meat coated with K-S composite functionalized with APE at 0.6 and 1.0 mL compared to the control. The study suggested that APPPE-enriched K-S composite could offer an eco-friendly and safe food preservation technique for fresh meat.

Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review

  • Bajpai, Vivek K.;Kang, So-Ra;Xu, Houjuan;Lee, Soon-Gu;Baek, Kwang-Hyun;Kang, Sun-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.207-224
    • /
    • 2011
  • Diseases caused by plant pathogenic bacteria constitute an emerging threat to global food security. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in several host plants leading to considerable losses in productivity and quality of harvests. Despite the ranges of controlling techniques available, the microbiological safety of economically important crops and crop plants including fruits and vegetables continues to be a major concern to the agriculture industry. On the other hand, many of the currently available antimicrobial agents for agriculture are highly toxic, non-biodegradable and cause extended environmental pollution. Besides, the use of antibiotics has provoked an increased resistance among the bacterial pathogens and their pathovars. Thus, novel efficient and safe remedies for controlling plant bacterial diseases are necessary. There has been an increasing interest worldwide on therapeutic values of natural products such as essential oils, hence the purpose of this review is to provide an overview of the published data on the antibacterial efficacy of essential oils that could be considered suitable for application in agriculture as biocontrol measures against plant pathogenic bacteria of Xanthomonas species. The current knowledge on the use of essential oils to control Xanthomonas bacteria in vitro and in vivo models has been discussed. A brief description on the legal aspects on the use of essential oils against bacterial pathogens has also been presented. Through this review, a mode of antibacterial action of essential oils along with their chemical nature and the area for future research have been thoroughly discussed.

The Potential Substitution of Oyster Shell Powder for Phosphate in Pork Patties Cured with Chinese Cabbage and Radish Powder

  • Su Min Bae;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.849-860
    • /
    • 2024
  • The use of natural ingredients in meat processing has recently gained considerable interest, as consumers are increasingly attracted to clean-label meat products. However, limited research has been conducted on the use of natural substitutes for synthetic phosphates in the production of clean-label meat products. Therefore, this study aimed to explore the potential of oyster shell powder as a substitute for synthetic phosphates in pork patties cured with Chinese cabbage or radish powders. Four different groups of patties were prepared using a combination of 0.3% or 0.6% oyster shell powder and 0.4% Chinese cabbage or radish powder, respectively. These were compared with a positive control group that contained added nitrite, phosphate, and ascorbate and a negative control group without these synthetic ingredients. The results showed that patties treated with oyster shell powder had lower (p<0.05) cooking loss, thickness and diameter shrinkage, and lipid oxidation than the negative control but had lower (p<0.05) residual nitrite content and curing efficiency than the positive control. However, the use of 0.6% oyster shell powder adversely affected the curing process, resulting in a decreased curing efficiency. The impact of the vegetable powder types tested in this study on the quality attributes of the cured pork patties was negligible. Consequently, this study suggests that 0.3% oyster shell powder could serve as a suitable replacement for synthetic phosphate in pork patties cured with Chinese cabbage or radish powders. Further research on the microbiological safety and sensory evaluation of clean-label patties during storage is required for practical applications.

Combined Effects of Sanitizer Mixture and Antimicrobial Ice for Improving Microbial Quality of Salted Chinese Cabbage during Low Temperature Storage (저온 저장 중 절임배추의 미생물학적 품질 향상을 위한 혼합 살균제재와 항균성 얼음 병합처리 효과)

  • Choi, Eun Ji;Chung, Young Bae;Han, Ae Ri;Chun, Ho Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1715-1724
    • /
    • 2015
  • The combined effects of a sanitizer mixture solution and antimicrobial ice on the quality of salted Chinese cabbages were examined. Salted Chinese cabbages were treated with a sanitizer mixture (comprised 50 ppm aqueous $ClO_2$ and 0.5% citric acid), packed in 2% brine and antimicrobial ice, and stored for 12 days at 4 and $10^{\circ}C$. Microbiological data on the salted Chinese cabbages after washing with the sanitizer mixture indicated that the populations of total aerobic bacteria, and yeast and molds decreased by 2.20 and 1.28 log CFU/g after treatment with the sanitizer mixture. In addition, coliforms population of salted Chinese cabbage after 12 days storage at $4^{\circ}C$ in the combined mixture of the sanitizer and antimicrobial ice was 3.22 log CFU/g, which was a significantly different from that of control (5.46 log CFU/g). The combined treatment of sanitizer mixture, antimicrobial ice, and low temperature at $4^{\circ}C$ suppressed reduction of pH and elevation of titratable acidity, resulting in delaying the growth of lactic acid bacteria. Differences in salinity, hardness, and Hunter's $L^*$, $a^*$, and $b^*$ values among treatments were negligible during storage at $4^{\circ}C$. Therefore, this study suggests that a combination of sanitizer mixture, antimicrobial ice treatment, and low temperature storage could improve the microbial safety and quality of salted Chinese cabbages during storage.

Quality Characteristics of Chitosan-ascorbate Treated Kwamaegi Prepared by Vacuum Drying, and Lowering Effect of Serum Lipids in Rats Fed High Fat Diets (Chitosan-ascorbate 처리 감압건조 과메기의 품질특성과 고지방식이 흰쥐의 혈청지질에 미치는 영향)

  • Shin, Kyung-Ok;Oh, Seung-Hee;Kim, Sood-Dong
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.669-675
    • /
    • 2007
  • Quality characteristics of Kwamaegi (semi-dried saury) prepared by treatment of chitosan-ascorbate (CA) and vacuum drying at $40{\sim}60^{\circ}C$(VDK), and the effect of the Kwamaegi on serum lipid profiles and anti-oxidation-related enzyme activity in rats fed high fat diets were investigated. The preparation periods were $4.5{\sim}8.3$ hr in VDK, while naturally dried Kwamaegi (NDK) took 360480 hr. Total microbe contents of VDK and NDK were $0.2{\sim}0.5$ and 8.2 log CFU/g, respectively. There was no significant difference in amino-nitrogen content. Compared with NDK, the acid and peroxide value, and fishy flavor of VDK40 (dried at $40^{\circ}C$) were significantly lower, and the texture, color and overall acceptability were higher. In animal experiments, weight gain, content of LDL-cholesterol and lipid peroxide, activities of total (T) and O type (O) xanthine oxidase, and the O/T ratio (%) were significantly lower in the VDK40 diet group than in the NDK diet group. The content of HDL-cholesterol in the VDK40 diet group was higher than in the NDK diet group. These results suggest that preparing CA-treated Kwamaegi with vacuum-drying at $40^{\circ}C$ can be applied throughout the year, and may shorten preparation time and improve its microbiological safety and nutritional values.

Effects of combined acetic acid and UV-C irradiation treatment on the microbial growth and the quality of sedum during its storage (Acetic acid와 UV-C 병합처리가 돌나물의 저장 중 미생물 성장과 품질에 미치는 영향)

  • Seong, Ki Hyun;Kang, Ji Hoon;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.581-586
    • /
    • 2014
  • With the current consumer trend toward health and wellbeing, the demand for consumption of fresh cut vegetables has been increasing. As a popular vegetable with functional components, sedum (Sedum sarmentosum) is widely used in Korea as a side dish that needs no cooking. In this study, to provide a hurdle technology for postharvest sedum, the effects of combined treatment of 1% acetic acid for washing and $10kJ/m^2$ UV-C irradiation on the microbial growth and quality of sedum were examined. After the treatment, the sedum samples were stored at $10^{\circ}C$ for six days, and the results of their microbial analysis as well as their color, vitamin C content, and antioxidant activity were analyzed. The combined treatment with acetic acid and UV-C irradiation reduced the initial populations of the total aerobic bacteria and the yeast and molds in the sedum by 3.28 and 4.22 log CFU/g, respectively, compared to those in the control. The Hunter L, a, and b values of the sedum did not significantly differ across the treatments. In addition, the vitamin C content and the antioxidant activity decreased significantly during the storage, regardless of the treatment. These results suggest that the combined treatment with 1% acetic acid and $10kJ/m^2$ UV-C irradiation can be useful as a hurdle technology for retaining the microbiological safety and quality of sedum during its storage.