• Title/Summary/Keyword: microbial starter

Search Result 104, Processing Time 0.038 seconds

Manufacturing and Quality Characteristics of the Cheonggukjang Fermented Using Starter Derived from Rice Straw Removed Bacillus cereus Selectively (Bacillus cereus가 선택적으로 제거된 볏짚유래 스타터를 이용한 청국장의 제조 및 품질특성)

  • Lee, Eun-Sil;Song, Ye-Ji;Kim, Kwang-Pyo;Yim, Eun-Jung;Jeong, Do-Yeon;Cho, Sung-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • The purpose of this study is to evaluate quality characteristics of the Cheonggukjang produced using rice straw-derived Bacillus cereus free starter culture (RiBS1). The Cheonggukjang was prepared in 0.1 and 1.0% inoculum concentrations of starter culture and fermented from 12 hr to 72 hr at 40 and $50^{\circ}C$. Amino-nitrogen contents after 48 hr fermentation were 559.6~590.2 mg% and 393.8~494.0 mg% at 40 and $50^{\circ}C$, respectively. Sensory evaluation showed that the Cheonggukjang fermented using RiBS1 starter for 48 hr at $50^{\circ}C$ was better than the control. And we inspected on B. cereus and biogenic amine in the Cheonggukjang produced using RiBS1 starter. As a results, B. cereus was not detected and histamine and tyramine of biogenic amine were $5.53{\pm}0.13{\sim}39.96{\pm}0.62mg/kg$. This research results showed that rice straw-derived B. cereus free starter culture (RiBS1) will be produce the Cheonggukjang with good flavour and taste.

Selection of Kimchi Starters Based on the Microbial Composition of Kimchi and Their Effects (김치 미생물 조성을 바탕으로 한 김치 스타터의 선정 및 효과)

  • Jin, Hyo-Sang;Kim, Jong-Bum;Yun, Yeong-Ju;Lee, Kyung-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.671-675
    • /
    • 2008
  • Based on information about the major microbial composition of kimchi and its relation to the taste, Leuconostoc mesenteroides K2M5 and Lactobacillus sakei K5M3 were selected as kimchi starter candidates. These two strains were found to be safe for industrial use because they showed neither harmful characteristics like ${\beta}$-hemolysis, ammonia and indole formation, and gelatin liquefaction, nor enzymatic activities like phenylalanine deaminase, ${\beta}$-glucuronidase, ${\beta}$-glucosidase, 7${\alpha}$-dehydroxylase and nitroreductase. Starter kimchi made with these strains were better in taste than the conventional kimchi when they are evaluated both by laboratory personnel and the public. Also microbial analysis of starter kimchi showed only starter bacteria after they were fermented to have the optimum acidity. Starter kimchi prepared with these two strains were not much different in physicochemical properties to the conventional kimchi except in that the starter kimchi were much higher in volatile organic acid content such as lactic acid. These results suggest that kimchi quality can be controlled to have consistent properties, both in taste and microbial composition, by using bacterial starters.

A Non-yeast Kefir-like Fermented Milk Development with Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6

  • Lee, Bomee;Yong, Cheng-Chung;Yi, Hae-Chang;Kim, Saehun;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.541-550
    • /
    • 2020
  • The use of yeast assist kefir fermentation, but also can cause food spoilage if uncontrolled. Hence, in this study, the microbial composition of an existing commercial kefir starter was modified to produce a functional starter, where Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6 were used to replace yeast in the original starter to produce non-yeast kefir-like fermented milk. The functional starter containing L. acidophilus KCNU and L. brevis Bmb6 demonstrated excellent stability with 1010 CFU/g of total viable cells throughout the 12 weeks low-temperature storage. The newly developed functional starter also displayed a similar fermentation efficacy as the yeast-containing control starter, by completing the milk fermentation within 12 h, with a comparable total number of viable cells (108 CFU/mL) in the final products, as in control. Sensory evaluation revealed that the functional starter-fermented milk highly resembled the flavor of the control kefir, with enhanced sourness. Furthermore, oral administration of functional starter-fermented milk significantly improved the disease activity index score by preventing drastic weight-loss and further deterioration of disease symptoms in DSS-induced mice. Altogether, L. acidophilus KCNU and L. brevis Bmb6 have successfully replaced yeast in a commercial starter pack to produce a kefir-like fermented milk beverage with additional health benefits. The outcome of this study provides an insight that the specific role of yeast in the fermentation process could be replaced with suitable probiotic candidates.

Determination of Microbial Diversity in Gouda Cheese via Pyrosequencing Analysis

  • Oh, Sangnam;Kim, Younghoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • The present study aimed to investigate the microbial diversity in Gouda cheese within the four months of ripening, via next-generation sequencing (NGS). Lactococcus (96.03%), and Leuconostoc (3.83%), used as starter cultures, constituted the majority of bacteria upon 454 pyrosequencing based on 16S rDNA sequences. However, no drastic differences were observed among other populations between the center and the surface portions of Gouda cheese during ripening. Although the proportion of subdominant species was <1%, slight differences in bacterial populations were observed in both the center and the surface portions. Taken together, our results suggest that environmental and processing variables of cheese manufacturing including pasteurization, starter, ripening conditions are important factors influencing the bacterial diversity in cheese and they can be used to alter nutrient profiles and metabolism and the flavor during ripening.

김치 발효소시지가 미생물학적 안정성에 미치는 효과

  • Lee, Ju-Yeon
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.61-87
    • /
    • 2004
  • ${\cdot}$ The LAB as an integrated part of kimchi were well adapted to the new habitat of fermenting sausage and exhibited good souring properties that are comparable to those commercial starter cultures. ${\cdot}$ With the added kimchi (5-15%) and kimchi-powder (2-5%), the necessary microbial stability of real fermented sausages was achieved. ${\cdot}$ In particular, kimchi-powder contributed to improving the safety of the fermented sausages as compared to the conventional one treated with starter culture.

  • PDF

Fermentation properties of rice-added yogurt using two types of blended lactic acid bacteria as a starter

  • Park, Yun Hwan;Choi, Jung Seok
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.273-281
    • /
    • 2021
  • These days, different types of yogurt are being manufactured by adding various starters and functional ingredients for health. The purpose of this study was to prepare yogurt added with rice followed by fermentation with two types of starters and to examine its attributes. Ten percent of skim milk powder and 0, 2.5, 5.0, 7.5, or 10% rice were mixed in water (w/v) and then inoculated with two types of starter: 1) Type A, Streptococcus thermophiles and Lactobacillus delbrueckii ssp. bulgaricus as starter; and 2) Type B, Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacteium animalis ssp. lactis as starter. The pH of B type yogurt was lower (p < 0.05) than that of A type yogurt from 6 hours to 14 hours after fermentation. The number of microorganisms in all fermented milk showed maximum increases at 2 and 6 hours of fermentation (p < 0.05). The number of microorganisms in fermented milk peaked at 6 hours after fermentation and maintained this level thereafter. There was no effect of rice addition on microbial growth or acidity of the fermented milk. Sensory attributes of yogurt samples with and without added rice were not significantly different. This experiment showed that the production efficiency of yogurt with added rice was not different when two different types of starters were used to manufacture yogurt.

Effects of Temperature and Supplementation with Skim Milk Powder on Microbial and Proteolytic Properties During Storage of Cottage Cheese

  • Oh, Nam Su;Lee, Hyun Ah;Myung, Jae Hee;Joung, Jae Yeon;Lee, Ji Young;Shin, Yong Kook;Baick, Seung Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.795-802
    • /
    • 2014
  • The aim of this study was to determine the effects of temperature and supplementation with skim milk powder (SMP) on the microbial and proteolytic properties during the storage of cottage cheese. Cottage cheese was manufactured using skim milk with 2% SMP and without SMP as the control, and then stored at $5^{\circ}C$ or $12^{\circ}C$ during 28 days. The chemical composition of the cottage cheese and the survival of the cheese microbiota containing starter lactic acid bacteria (SLAB) and non-starter culture lactic acid bacteria (NSLAB) were evaluated. In addition, changes in the concentration of lactose and lactic acid were analyzed, and proteolysis was evaluated through the measurement of acid soluble nitrogen (ASN) and non-protein nitrogen (NPN), as well as electrophoresis profile analysis. The counts of SLAB and NSLAB increased through the addition of SMP and with a higher storage temperature ($12^{\circ}C$), which coincided with the results of the lactose decrease and lactic acid production. Collaborating with these microbial changes, of the end of storage for 28 days, the level of ASN in samples at $12^{\circ}C$ was higher than those at $5^{\circ}C$. The NPN content was also progressively increased in all samples stored at $12^{\circ}C$. Taken together, the rate of SLAB and NSLAB proliferation during storage at $12^{\circ}C$ was higher than at $5^{\circ}C$, and consequently it led to increased proteolysis in the cottage cheese during storage. However, it was relatively less affected by SMP fortification. These findings indicated that the storage temperature is the important factor for the quality of commercial cottage cheese.

Effects of various weaning times on growth performance, rumen fermentation and microbial population of yellow cattle calves

  • Mao, Huiling;Xia, Yuefeng;Tu, Yan;Wang, Chong;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1557-1562
    • /
    • 2017
  • Objective: This study was conducted to investigate the effects of weaning times on the growth performance, rumen fermentation and microbial communities of yellow cattle calves. Methods: Eighteen calves were assigned to a conventional management group that was normally weaned (NW, n = 3) or to early weaned (EW) group where calves were weaned when the feed intake of solid feed (starter) reached 500 g ($EW_{500}$, n = 5), 750 g ($EW_{750}$, n = 5), or 1,000 g ($EW_{1,000}$, n = 5). Results: Compared with NW, the EW treatments increased average daily gain (p<0.05). The calves in $EW_{750}$ had a higher (p<0.05) starter intake than those in $EW_{1,000}$ from wk 9 to the end of the trial. The concentrations of total volatile fatty acids in $EW_{750}$ were greater than in NW and $EW_{1,000}$ (p<0.05). The EW treatments decreased the percentage of acetate (p<0.05). The endogenous enzyme activities of the rumen were increased by EW (p<0.05). EW had no effect on the number of total bacteria (p>0.05), but changes in bacterial composition were found. Conclusion: From the present study, it is inferred that EW is beneficial for rumen fermentation, and weaning when the feed intake of the starter reached 750 g showed much better results.

Fermentative characteristics of wheat bran direct-fed microbes inoculated with starter culture

  • Kim, Jo Eun;Kim, Ki Hyun;Kim, Kwang-Sik;Kim, Young Hwa;Kim, Dong Woon;Park, Jun-Cheol;Kim, Sam-Chul;Seol, Kuk-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.387-393
    • /
    • 2016
  • This study was conducted to determine the fermentative characteristics of wheat bran inoculated with a starter culture of direct-fed microbes as a microbial wheat bran (DMWB) feed additive. Wheat bran was prepared with 1% (w/w, 0.5% Lactobacillus plantarum and 0.5% of Saccharomyces cerevisiae) starter culture treatment (TW) or without starter culture as a control (CW). Those were fermented under anaerobic conditions at $30^{\circ}C$ incubation for 3 days. Samples were taken at 0, 1, 2, and 3 days to analyze chemical composition, microbial growth, pH, and organic acid content. Chemical composition was not significantly different between CW and TW (p > 0.05). In TW, the number of lactic acid bacteria and yeast increased during the 3 days of fermentation (p < 0.05) and the population of lactic acid bacteria was significantly higher than in CW (p < 0.05). After 3 days, the number of yeast in TW was $7.50{\pm}0.07log\;CFU/g$, however, no yeast was detected in CW (p < 0.05). The pH values of both wheat bran samples decreased during the 3 days of fermentation (p < 0.05), and TW showed significantly lower pH than CW after 3 days of fermentation (p < 0.05). Contents of lactic acid and acetic acid increased significantly at 3rd day of fermentation in TW. However, no organic acids were generated in CW during testing period. These results suggest that 3 days of fermentation at $37^{\circ}C$ incubation after the inoculation wheat bran with starter culture makes it possible to produce a direct-feed with a high population of lactic acid bacteria at more than $10^{11}CFU/g$.

Isolation and characterization of a Bacillus spp. for manufacturing the feed additives in livestock (가축의 보조사료 개발을 위한 Bacillus spp.의 분리 및 특성)

  • Park, Hae Suk;Jo, Seung Wha;Yim, Eun Jung;Kim, Yun Sun;Moon, Sung Hyun;Cho, Ho Seong;Kim, Hyun-Young;Cho, Yong Sik;Cho, Sung Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The aims of this study were to isolate spore-forming Bacillus strains that exhibit high digestibility and anti-pathogenic bacteria toward feed for calves. Total 136 spore-forming strains were isolated from finished feeds and their ingredients. Among them, 93 strains were identified as Bacillus species when analyzed by 16S rRNA sequencing. For industrial use, three strains named as Bacillus licheniformis SHS14, B. subtilis LCB7, B. amyloliquefaciens LCB10 were selected after evaluating the industrial standards that are related with heat and acid resistance, enzyme activities, and anti-pathogenic activities against Samonella dublin ATCC15480 and E. coli K99. After each culture, 3 selected strains were mixed together at 1:1:1 (v/v/v) ratio and then prepared as the mixed starter culture for feeding. The changes in microbial community were analyzed via 16S rRNA metagenomics. The initial community ratio among three strains was maintained even after manufacturing into final products. Also, in vitro, enzymatic and anti-pathogenic activities were almost same as those when cultured in single culture, and results of anti-pathogenic activities conducted with calves showed 90% activities against lincomycin, which would be indicative of a promising feed starter.