• 제목/요약/키워드: microbial profiles

검색결과 159건 처리시간 0.027초

Characterization of Microbial Community in Biological Wastewater Treatment System Using Respiratory Quinone Profiles

  • Lim Byung-Ran;Ahn Kyu-Hong;Lee Yonghun
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2003년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.111-114
    • /
    • 2003
  • The dynamics of microbial community structure of the various domestic wastewater treatment processes were examined using a novel approach of quinone profiles. The compositions of microbial quinone of 5 sites fer plant and lab-scale activated sludge were analyzed. More than 14 kinds of quinones were observed in the activated sludges tested in this study. The microbial community structure of the plant activated sludge processes a little differed from that of the lab-scale submerged MBR systems. The dominant quinones were UQ-8, UQ-10 followed $MK-8(H_4)$, MK-7 and MK-6. The molar ratio of ubiquinones to menaquinones (UQ/MK) changed from 0.81 to 1.9, indicating that aerobic bacteria dominated the microbial community of the activated sludge examined. The microbial diversity of the activated sludges calculated from the all quinone compositions was 9.5-11.9 and the microbial equability of the activated sludges was 0.64-0.79.

  • PDF

Quinone profile를 이용한 하천생태계의 미생물군집구조 해석 (Analysis of Microbial Community Structure in River Ecosystem Using Quinone Profiles)

  • 임병란;이기세;안규홍
    • 상하수도학회지
    • /
    • 제20권5호
    • /
    • pp.685-690
    • /
    • 2006
  • The differences in microbial community structures between planktonic microorganism and biofilm in rivers were investigated using respiratory quinone profiles. The compositions of microbial quinone for 4 tributaries of the Kyongan Stream located in/flowing through Yongin City, Gyeonggi-Do were analyzed. Ubiquinone(UQ)-8, UQ-9, menaquinone(MK)-6 and Plastoquinone(PQ)-9 were observed in all samples of planktonic microorganism and biofilm for the sites investigated, Most planktonic microorganism and biofilm had UQ-8(15 to 30%) and PQ-9(over 30%) as the dominant quinone type. These results indicated that oxygenic phototrophic microbes(cyanobacteria and/or eukaryotic phytoplankton) and UQ-8 containing proteobacteria constituted major microbial populations in the river. The quinone concentration in the river waters tested, which reflects the concentration of planktonic microorganisms, increases with increasing DOC. Further research into this is required. The microbial diversities of planktonic microorganism and biofilm calculated based on the composition of all quinones were in the range from 4.2 to 7.5, which was lower than those for activated sludge(ranging from 11 to 14.8) and soils(ranging from 13.4 to 16.8). The use of quinone profile appears to be a useful tool for the analysis of microbial community structure in river.

Variation in Microbial Biomass and Community Structure in Sediments of Peter the Great Bay (Sea of Japan/East Sea), as Estimated from Fatty Acid Biomarkers

  • Zhukova Natalia V.
    • Ocean Science Journal
    • /
    • 제40권3호
    • /
    • pp.145-153
    • /
    • 2005
  • Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria - were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.

Effects of Microbial Additive Supplementation on Meat Quality and Fatty Acid Profiles of Growing-Finishing Pigs

  • Hyuk Jun Lee;Myeong Ji Seo;Young Ho Joo;Ji Yoon Kim;Chang Hyun Baeg;Dong Hyeon Kim;Seong Shin Lee;Sam Churl Kim
    • 한국환경과학회지
    • /
    • 제32권12호
    • /
    • pp.925-932
    • /
    • 2023
  • The objective of this study was to investigate the effects of microbial additive on the meat quality and fatty acid (FA) profiles of growing-finishing pigs. A total of 180 growing-finishing pigs (Landrace × Yorkshire × Duroc; mixed sex; 14 weeks of age; 58.0 ± 1.00 kg) were randomly distributed into three treatments with three pens consisting of 20 growing-finishing pigs per pen for 60 days. The experimental treatments were as follows: 0, 0.5, and 1.0% microbial additive. The crude protein, cooking loss, drip loss, water holding capacity, and shear force in loin muscle were no significant differences among treatments (p>0.05), except for the moisture and crude fat contents. The pH and TBARS of loin muscle shown no significant differences among treatments (p>0.05). However, the L* and a* values of loin muscle were the highest in the 1.0% supplementation group compared with the other treatments (p<0.05). The b* value of loin muscle was the highest in the control group compared with the other treatments (p<0.05). Linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, and n-3 FAs contents of loin muscle were the highest in 1.0% supplementation group compared with the other treatments (p<0.05). In conclusion, using 1.0% microbial additive supplementation can improve meat quality by increasing polyunsaturated FA concentration and meat color in pig loins.

Linkage Between Biodegradation of Polycyclic Aromatic Hydrocarbons and Phospholipid Profiles in Soil Isolates

  • Nam, Kyoung-Phile;Moon, Hee-Sun;Kim, Jae-Young;Kukor, Jerome-J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.77-83
    • /
    • 2002
  • A bacterial consortium capable of utilizing a variety of polycyclic aromatic hydrocarbons has been isolated from a former manufactured gas plant site. The consortium consisted of four members including Arthrobacter sp., Burkholderia sp., Ochrobacterium sp., and Alcaligenes sp., which were identified and characterized by the patterns of fatty acid methyl esters (FAME analysis) and carbon source utilization (BIOLOG system). With the individual members, the biodegradation characteristics of aromatic hydrocarbons depending on different growth substrates were determined. FAME analyses demonstrated that microbial fatty acid profiles changed to significant extents in response to different carbon sources, and hence, such shift profiles may be informative to characterize the biodegradation potential of a bacterium or microbial community.

온도가 유기물의 질소무기화와 미생물 군집구조에 미치는 영향 (Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil)

  • 좌재호;문경환;김성철;문두경;고상욱
    • 한국토양비료학회지
    • /
    • 제45권3호
    • /
    • pp.377-384
    • /
    • 2012
  • 온도조건이 유기물의 질소무기화율, 인지질 지방산유래 미생물 분포와 군집구조에 미치는 영향을 평가하고자 수행하였다. 비화산회토양 30 g에 입상유기질비료, 음식물퇴비, 돈분퇴비를 각각 2 g씩 잘 혼합한 후 $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$에서 항온배양을 하면서 질소 무기화량과 인지질 지방산 함량을 분석하였다. 질소 무기화율은 온도와 비례하여 증가하였으며 음식물퇴비>입상유기질비료>돈분퇴비 순으로 질소무기화율이 높았다. 지방산 유래 미생물 그룹의 분포는 온도, 유기물종류에 따라 차이를 보였으며 시간이 경과 할수록 미생물의 밀도는 감소하는 경향을 나타냈다. G-/G+, F/B, Unsat/sat비는 온도가 올라가면서 감소하였다. 인지질 지방산 함량을 이용하여 주성분 분석을 한 결과 270일에 온도에 따라 입상유기질비료는 뚜렷한 미생물군집구조를 보였다. 결론적으로 미생물 활성은 온도, 유기물 종류에 따라 상대적인 민감도와 시기별로 차이를 보였다.

온도가 화산회토양의 질소무기화와 미생물군집이동에 미치는 영향 (Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil)

  • 좌재호;문두경;고상욱;현해남
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.467-474
    • /
    • 2012
  • 본 연구는 토양과 온도조건이 질소무기화율, 인지질 지방산유래 미생물 분포와 군집구조에 미치는 영향을 평가하고자 수행하였다. 화산회토양 30 g에 입상유기질비료, 음식물퇴비, 돈분퇴비를 각각 2 g씩 잘 혼합한 후 $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$에서 항온배양을 하면서 질소 무기화율과 인지질 지방산 함량을 분석하였다. 질소 무기화율은 온도와 비례하여 증가하였으며 음식물퇴비>입상유기질비료>돈분퇴비 순으로 질소무기화율이 높았다. 지방산 유래 미생물 그룹의 분포는 온도, 유기물종류에 따라 차이를 보였으며 시간이 경과 할수록 미생물의 밀도는 감소하는 경향을 나타냈다. G-/G+, F/B, Unsat/sat 비는 온도가 $10^{\circ}C$씩 올라갈수록 감소하였고 cy19:0/$18:1{\omega}7c$비는 음식물퇴비와 돈분퇴비에서 증가하였다. PLFA 함량을 이용한 주성분 분석 결과 초기 (75일)는 $10^{\circ}C$, 후기 (270일)는 $30^{\circ}C$에서 온도요인에 따라 뚜렷하게 미생물 군집을 보였으며 시간이 경과 할수록 군집이동이 나타냈다.

Quinone profile과 PCR-DGGE를 이용한 정수장 침전지에서의 부착조류 및 미생물군집의 계절적 변화해석 (Analysis of the Seasonal Change in Attached Algae and Microbial Community Structure in Sediment Basin Trough of Water Treatment Plant By Using Quinone Profile and PCR-DGGE)

  • 유현선;임병란;안규홍
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.461-467
    • /
    • 2006
  • The seasonal change in attached algae and microbial community structure at sedimentation basin of water treatment plant was investigated by using quinone profiles and denaturing gel gradient electrophoresis (DGGE). The photosynthetic bacteria and algae contains PQ-9 and VK-1 as major quinone are major component of the total quinone fraction in attached algae and microorganisms on sedimentation basin trough. The microorganisms containing menaquinones appear to be sensitivity to the change in temperature than those containing ubiquinones. The plot of the mole fraction of dominant quinone species ($f_d$) to the DQ values showed higher sensitivity to the seasonal change in the microbial community structure. The results indicated that quinone and DGGE are useful tool for the evaluation of the changes in the microbial community structure.

폐슬러지 감량화 및 재활용을 위한 오존 처리시 하수슬러지내의 미생물 군집구조의 변화 (Change of Microbial Community on Ozonation of Sewage Sludge to Reduce Excess Sludge Production)

  • 홍준석;임병란;안규홍;맹승규
    • 상하수도학회지
    • /
    • 제18권1호
    • /
    • pp.59-65
    • /
    • 2004
  • The change of the microbial community structure in excess sludge of different sewage treatment plants by ozone treatment was investigated by quinone profiles. The resulting ozone dosage ranged from 0.1 to $0.4gO_3/gTS$. In terms of overall sludge reduction, more than 50% reduction of the total sludge mass could be achieved by ozone treatment at $0.4gO_3/gTS$. Quinone concentration and type in sludge of different treatment plants were remarkably decreases with increasing ozone dose. Ubiquinones(UQs)-8, -10 and MK-8 were still remained in the ozonized sludge at $0.4gO_3/gTS$. The results of this study showed that the remaining microorganisms belong to UQs-8, -10 and MK-8 were difficult to destruct cell membrane or wall by ozonation. Fecal Streptococci and Salmonella were not detected at ozone dose of $0.2gO_3/gTS$, but Fecal Coliform was not detected at ozone dose of $0.4gO_3/gTS$.

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.