Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.4.467

Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil  

Joa, Jae-Ho (National Institute of Horticultural & Herbal Science, RDA)
Moon, Doo-Gyung (National Institute of Horticultural & Herbal Science, RDA)
Koh, Sang-Wook (National Institute of Horticultural & Herbal Science, RDA)
Hyun, Hae-Nam (Major of Plant Resources and Environment, Jeju National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.4, 2012 , pp. 467-474 More about this Journal
Abstract
This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community structure in volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles were different significantly caused by incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. But cy19:0/$18:1{\omega}7c$ ratio increased both FWC and PMC treatment. Principal component analysis using PLFA profiles showed that microbial community structure made up clearly at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$) by temperature factor. As incubating time passed, microbial community structure shifted gradually.
Keywords
Temperature; Nitrogen mineralization; Microbial community shift; Volcanic ash soil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Agehara, S. and D.D. Warncke. 2004. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Am. J. Soil Sci. Soc. 69:1844-1855.
2 Bapiri, A., E. Bååth, and J. Rousk. 2010. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microb. Ecol. 60:419-428.   DOI
3 Bardgett, R.D., P.J. Hobbs, and A. Frostegard. 1996. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22:261-264.   DOI   ScienceOn
4 Bligh, E.G. and W.J. Dyer. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.   DOI
5 Bossio, D.A., K.M. Scow, N. Gunapala, and K.J. Graham. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1-12.   DOI   ScienceOn
6 Bossio D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phopholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278.   DOI   ScienceOn
7 de Ridder-Duine, A.S., G.A. Kowalchuk, P.J.A.K. Gunnewiek, W. Smant, J.A. van Veen, and W. de Boer. 2005. Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol. Biochem. 37:349-357.   DOI
8 Deenik, J. 2006. Nitrogen mineralization potential in important agricultural soils of Hawai'i. Soil Crop Manage. 15:1-5.
9 Feng, X. and M.J. Simpson. 2009. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol. Biochem. 41:804-812.   DOI
10 Joa, J.H., D.G. Moon, S.J. Chun, C.H. Kim, K.S. Choi, H.N. Hyun, and U.G. Kang.. 2009. Effect of temperature on soil microbial biomass, enzyme activities, and PLFA content during incubation period of soil treated with organic materials. Korean J. Soil Sci. Fert. 42:500-512.   과학기술학회마을
11 Joa, J.H., K.H. Moon, S.C. Kim, D.G. Moon, and S.W. Koh. 2012. Effect of temperature condition on nitrogen mineralization of organic matter and soil microbial community structure in non-volcanic ash soil. Korean J. Soil Sci. Fert. 45:377-384.   과학기술학회마을   DOI
12 Kaur, A., A. Chaudhary, R. Choudhary, and R. Kaushik. 2005. Phospholipid fatty acid-A bioindicator of environment monitoring and assessment in soil ecosystem. Current Science 89:1103-1112.
13 Kemmitt, S.J., D. Wright, K.W.T. Goulding, and D.L. Jones. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38:898-911.   DOI   ScienceOn
14 Li, W.H., C.B. Zhang, H.B. Jiang, G.R. Xin, and Z.Y. Yang. 2006. Changes in soil microbial community associated with invasion of the exotic weed Mikania micrantha H. B. K. Plant Soil 281:309-324.   DOI
15 Manzoni, S. and A. Porpotato. 2007. A theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles. Soil Biol. Biochem. 39:1542-1556.   DOI   ScienceOn
16 NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
17 Marschner, P., E. Kandeler, and B. Marschner. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35:453- 461.   DOI   ScienceOn
18 Mondini, C., M.L. Cayuela, T. Sinicco, M.A.S. Monedero, E. Bertolone, and L. Bardi. 2008. Soil application of meat and bone meal. Short-term effects on mineralization dynamics an soil biochemical and microbiological properties. Soil Biol. Biochem. 40:462-474.   DOI   ScienceOn
19 Nobili, D.M., M. Contin, and P.C. Brookes. 2006. Microbial biomass dynamics in recently air-dried and rewetted soils compared to others stored air-dry for up to 103 years. Soil Biol. Biochem. 38:2871-2881.   DOI   ScienceOn
20 Nunan, N., T.J. Daniell, B.K. Singh, A. Papert, J.W. McNicol, and J.I. Prosser. 2005. Links between plant and rhizoplane bacterial communities in grassland soils characterized using molecular techniques. Appl. Environ. Microbiol. 71:6784-6792.   DOI
21 Rahman, M.H. and S. Sugiyama. 2008. Dynamics of microbial community in Japanese andisol of apple orchard production systems. Commun. Soil Sci. Plan. 39:1630-1657.   DOI
22 Reichstein, M., T. Katter, O. Andren, P. Ciais, E.D. Schulze, W. Cramer, D. Papale, and R. Valentini. 2005. Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences 2:317-321.   DOI
23 Rosa, M., J.A. Pascuala, C. Garciaa, M.T. Hernandeza, and H. Insam. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biolo. Biochem. 38:3443-3452.   DOI
24 Webster, G., L.C. Watt, J. Rinna, J.C. Fry, R.P. Evershed, R.J. Parkes, and A.J. Weightman. 2006. A comparison of stableisotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ. Microb.8: 1575-1589.   DOI
25 Takenaka, M and K. Hayano. 1999. Investigation on the influence of the global warming on the mineralization of soil organic matter. Research Outcomes, Agriculture, Forestry Fishery Technology Bureau. 339:232-236.
26 Tscherko, D., and E. Kandeler. 1999. Classification and monitoring of soil microbial biomass, N-mineralization and enzyme activities to indicate environmental changes. Die Bodenkultur. 50:215-226
27 Wang, W., C.J. Smith, P.M. Chalk, and D. Chen. 2001. Evaluation chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference. Soil Sci. Soc. Am. J. 65:368-376.   DOI
28 Wu, Y., X. Yu, H. Wang, N. Ding, and J. Xu. 2010. Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis. J. Soils Sediments 10:223-230.   DOI
29 Yao, H., Z. He, M.J. Wilson, and C.D. Campbell. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol. 40:223-237.