• Title/Summary/Keyword: microbial product

Search Result 437, Processing Time 0.028 seconds

Acute Oral, Pulmonary and Intravenous Toxicity/Pathogenicity Testing of Burkholderia pyrrocinia CAB08106-4 of in Rats (랫드를 이용한 Burkholderia pyrrocinia CAB08106-4의 급성경구, 호흡기, 정맥독성/병원성시험)

  • Kwon, Min;Kang, Tae-Ku;Chung, Chang-Kook;Park, Cheol-Beom
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • Burkholderia pyrrocinia CAB08106-4 has an anti-bacterial effect on Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp.. It is an environmentally friendly microbial product that prevents and controls a variety of phytopathogens involving Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp.. The aim of this study was to assess and to compare the pathogenicity of Burkholderia pyrrocinia CAB08106-4 by single exposure of rats through several routes such as oral, intranasal and intravenous. For the acute toxicity / pathogenicity study, the animals were sacrificed on days 3, 7, 14 and 21, and macroscopically observed their organs to examine the numbers of internally-retained pesticidal microbes. Clinical examinations were performed daily during administration period, and body weight gain was evaluated. In the study, no clinical sign, weight gain and mortality were observed in relation to the administration of test article. The significant changes of internal/external microbes by test article were not detected. The pathological findings in relation to the administration of the test article in the necropsy were not observed. It could be concluded that the microorganism was not toxic or pathogenic in rats via oral, intranasal and intravenous route.

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.364-370
    • /
    • 2008
  • Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.

Effects of the Extracts from Gyrophora esculenta and Coriolus versicolor judae Mycelia on the Growth of Intestinal Bacteria (석이버섯과 운지버섯 균사체 추출물이 장내 세균의 생육에 미치는 영향)

  • Park, Kyoung-Ran;Lee, Woon-Jong;Cho, Min-Gyu;Park, Eui-Seok;Jeong, Jun-Young;Kwon, Oh-Sung;Yoon, Hyang-Sik;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.820-825
    • /
    • 2010
  • The functional food components from various Basidiomycota were investigated to improve human intestinal microflora, especially associated with obesity. EtOH extract from Gyrophora esculenta fruit body and Coriolus versicolor judae mycelia showed antimicrobial activities on Eubacterium limosum, Clostridium perfrigens, Clostridium paraputrificum, Clostridium difficile and Clostridium ramosum, and on Bacteroides fragilis, respectively. Although the 80% EtOH extract from G. esculenta fruit body and hot-water extract from C. versicolor judae mycelia did not reduce weight of the rats in the high fat diet, these extracts showed stability at high temperatures and at wide pH ranges. In the rat group of feeding 80% EtOH extract from G. esculanta fruit body, Bifidobacterium spp. were increased and Clostridium spp. and Eubacterium spp. were decreased compared to the high fat feeding group. Also sensory evaluation was carried out for the development of prototype drink product. These results demonstrated the possibilities of C. versicolor judae and G. esculenta as a functional food components to control intestinal microbial flora.

Microbial Conversion of Woody Waste into Sugars and Feedstuff (II) - Production of Cellulolytic Enzymes from Aspergillus fumigatus and Saccharification of Popla Wood (미생물(微生物)에 의한 목질자원(木質資源)의 당화(糖化) 및 사료화(飼料化)에 관(關)한 연구(硏究) (II) - Aspergillus fumigatus KC-1으로부터 섬유소 분해 효소의 생산 및 현사시나무의 효소가수분해)

  • Chung, Ki-Chul;Huh, Jeong-Weon;Myung, Kyu-Ho;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 1987
  • The cellulolytic activities of Aspergillus fumigatus KC-1 was investigated, which showed the most active producer of cellulase among the 256 strains of cellulose-decomposing microorganisms screened in our laboratory. All the examined cellulolytic activities (filter paper-, Avicel-, cotton-, CMC-, salicin- and xylansaccharifying activity) in a culture of A. fumigatus KC-1 grown on 1% popular sawdust pretreated with peroxide alkaline reached a maximum within 4-5 days. The optimum pH and temperature for the enzymatic activity was found to be pH 4.5 and $60^{\circ}C$ respectively. The sawdust of poplar wood delignified with 1% NaOH and 20% peracetic acid succesively recorded the highest hydrolysis rate in the tests of enzymatic saccharification. The major end product of hydrolysis of poplar wood with the cellulolytic enzymes obtained from A. fumigatus KC-1 was glucose with small amount of cellobiose and xylose. It can be concluded from these results that A. fumigatus KC-1 is an advantagous source of a cellulase that is capable of hydrolyzing cellulose to glucose rapidly. The influence of degree of delignification, substrate size and its concentration on the rate of hydrolysis of poplar wood was also discussed.

  • PDF

Effect of Surface Sterilization on Quality of Vacuum Packaged Fresh-cut Deodeok (Codonopsis lanceolata) during Storage (표면살균수 처리 후 진공포장된 신선편이 더덕의 저장 중 품질특성 변화)

  • Choi, Duck-Joo;Lee, Yun-Jung;Kim, Youn-Kyeong;Kim, Mun-Ho;Choi, So-Rye;Cha, Hwan-Soo;Park, Hyung-Woo;Youn, Aye-Ree
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.18 no.1_2
    • /
    • pp.39-44
    • /
    • 2012
  • This study investigated the changes in the quality of minimally processed sliced Deodeok (Codonopsis lanceolata) during storage at $7^{\circ}C$ in relation to vacuum packing using PE film after the various surface washing treatments. The surface washing treatments resulted in approximately 1~2 log CFU/g reduction of microbial load in the early storage day. After 20 days, the weight loss rate, deterioration rate, hardness, color, total microorganism levels and the coliform count of deodeok washed by ultrasonic wave water was deteriorated rapidly like the control. When measured by the fresh-cut deodeok surface using the video microscope system, washing with chlorine water and electrolyzed water didn't seem to make perceivable quality deterioration during the 10 days at $7^{\circ}C$. The hardness and color maintenance of the product vacuum packaged using PE film after washing with electrolyzed water, was better than that of other treatments.

  • PDF

Purification and Characterization of Acidic Chitinases from Gizzards of Broiler (Gallus gallus L.)

  • Han, Beom-Ku;Moon, Jong-Kook;Ryu, Yeon-Woo;Park, Yun-Hee;Jo, Do-Hyun
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.326-331
    • /
    • 2000
  • Acidic chitinases from the gizzards of a broiler were purified to homogeneity, using precipitation with $(NH_{4})_{2}SO_{4}$, ion exchanger chromatography, gel filtration, chromatofocusing and hydrophobic interaction chromatography. The enzymes, GAC1 and GAC2, were purified 180- and 194- folds with a recovery of 4.9% and 2.7%, respectively. The molecular mass of GAC1 and GAC2 were 48.2 kDa and 57.8 kDa, respectively. Chromatofocusing resulted in a pI of 3.1 for both enzymes. The purified enzymes were endochitinases that were devoid of ${\beta}-N-acetylglucosaminidase$ and lysozyme activity. Kinetic studies using $[^3H]chitin$ indicate that GAC1 has a $K_m$ and $V_{max}$ of 1.97 mg/ml and 185 mg/mg protein/h, respectively. The GAC2 has a $K_m$ and $V_{max}$ of 0.42 mg/ml and 92.3 mg/mg protein/h, respectively at optimal pH and temperature (pH 5.0 and $60^{\circ}C$). When the pentamer and hexamer of N-acetylglucosamine (GlcNAc) were used as a substrate, the major product by GAC1 was the dimer of GlcNAc with a differential accumulation of the monomer and trimer, depending upon the substrate. However, the GAC2 produced the dimer and trimer in an equal quantity, regardless of the substrate used. The first 9 $NH_2-terminal$ amino acid residues of the purified gizzard chitinase GAC1 and GAC2 shared a 100% homology. The first 25 $NH_2-terminal$ amino acid residues of GAC1 also shared 55-60% homology with animal chitinases and some animal proteins, such as whey protein and oviduct-specific proteins. However, little homology was found with either microbial and plant chitinases, or egg white lysozyme.

  • PDF

The Source Identification of Spilled Oil by Pristane/Phytane Ratio

  • Bae, Il-Sang;Kweon Jung;Oh, Hyun-Jung;Shin, Ho-Sang;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.64-67
    • /
    • 2003
  • In order to identify the origin and nature of the spilled oil in the potential source, we analyzed the concentrations of specific fuel constituents in fuel standard and environmental samples. The ratios of pristane/phytane are virtually unaltered because these compounds have the same bolatility in environmental samples. These were useful to identify the source of the fuel oil and to assess the effect of microbial degradation and weathering of the fuel oil. We analyzed the ratios of pristane/phytane in neat white kerosene, boiler kerosene, JP-8 and diesel products from L and S gas station. The ratios of pristane/phytane in L-white kerosene and JP-8 was 3.10 $\pm$0.03 and 1.77 $\pm$ 0.01, respectively. Otherwise, the ratios of pristane/phytane in water phase after distribution of fuel oil and water was 2.97 $\pm$0.02 in case of white kerosene and 1.65 $\pm$ 0.02 in case of JP-8. It is apparent from the results that the ratios of pristane/phytane were as product-specific, especially between kerosene and JP-8, and therefore, can also be used for fuel type identification in free products and groundwater samples which were collected in monitoring wells.

Purification, Characterization, and Gene Cloning of Chitosanase from Bacillus cereus H-l (Bacillus cereus H-1으로부터 Chitosanas리 분리와 특성연구 및 유전자 클로닝)

  • Jang, Hong-Ki;Yi, Jae-Hyoung;Kim, Jung-Tae;Lee, Keun-Eok;Park, Shin-Geon
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.216-223
    • /
    • 2003
  • A 1.3-kb of chitosanase gene (choA) encoding 45-kDa polypeptide was cloned, expressed, and characterized from a newly isolated Bacillus cereus H-1. The chitosanase protein (ChoA) of B. cereus H-l was purified to homogeneity by ammonium sulfate precipitation and CM-sephadex column chromatography. Optimum pH was around 7, and stable pH range in the incubation at 50 C was 4-11. Optimum temperature was around 50 C, and enzyme activity was relatively stable below 45 C. ChoA showed the activities toward carboxymethyl cellulose (CMC) in addition to soluble or glycol chitosan. Based on MALDI-TOF MS analysis of purified ChoA, the entire amino acid sequence of ChoA was interpreted by database searching of previously known Bacillus chitosanases. A 1.6 kb of PCR product of corresponding chitosanase gene was obtained and its DNA sequence was determined. The deduced amino acid of choA revealed that ChoA have a 98% homology with those of Bacillus sp. No.7-M strain and Bacillus sp. KCTC0377BP. The recombinant ChoA protein was expressed in E. coli DH5$\alpha$. Deduced amino acid comparison of choA with other chitosanases suggested that it belongs to family 8 microbial endo-chitosanase with chitosanase-cellulase activity.

Toxicity Evaluation of Burkholderia pyrrocinia CAB08106-4 in Cyprinus carpio and Daphnia magna (Burkholderia pyrrocinia CAB08106-4 원제가 잉어 및 물벼룩에 미치는 영향 연구)

  • Cho, Jae-Gu;Kim, Mee-Seon;Choi, Hyun-Jung;Kwon, Min;Kang, Tae-Gu;Chung, Chang-Kook;Kim, Kyun;Oh, Seung-Min;Park, Cheol-Beom
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.21-25
    • /
    • 2014
  • Bukholderia pyrrocinia CAB08106-4 has an anti-fungal effect on Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp. It is environmentally friendly microbial product that prevents and controls a variety of phytopathogens including Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp. The aim of this study was to assess the environmental toxicity using Cyprinus carpio and Daphnia magna. Bukholderia pyrrocinia CAB08106-4 ($1.0{\times}10^9cfu/mL$) was adminatrated to Cyprinus carpio and Daphnia magna according to the toxicity test guideline for peciticide. $LC_{50}$ of Bukholderia pyrrocinia CAB08106-4 is over $6.67{\times}10^4cfu/mL$ in Cyprinus carpio and Daphnia magna and no adverse effect was observed. Based on these results, we concluded that Bukholderia pyrrocinia CAB08106-4 has no toxiciy for Cyprinus carpio and Daphnia magna.

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.