• Title/Summary/Keyword: microbial product

Search Result 437, Processing Time 0.029 seconds

Xylanase Production by Mixed Culture Using Crude Hemicellulose from Rice Straw Black Liquor and Peat Moss as an Inert Support

  • Shata, Hoda Mohamed Abdel Halim;El-Deen, Azza Mohmed Noor;Nawwar, Galal Abdel Moen;Farid, Mohmed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • Black liquor (BL) is a by-product of rice straw pulping process. It is a low costs raw material for production value-adding proteins and enzymes, which has been paid more and more attention to reduce its environmental pollution. Mixed cultures of micelial fungi, Trichoderma reesei Northern Regional Research Laboratory (NRRL)11236, Trichoderma reesei NRRL 6165 and Aspergillus niger strains NRC 5A, NRC 7A, and NRC 9A were evaluated for their ability to produce xylanase using crude hemicellulose (CHC) prepared from BL and peat moss as an inert support under solid state fermentation (SSF). The most potent strains, A. niger NRC 9A (818.26 U/g CHC) and T. reesei NRRL 6165 ($100.9{\pm}57.14$ U/g CHC), were used in a mixed culture to enhance xylanase production by co-culturing under SSF. In the mixed culture, xylanase production ($1070.52{\pm}12.57$ U/g CHC) was nearly1.3 and 10.6-fold increases over the activities attained in their monocultures, A. niger NRC 9A and T. reesei NRRL 6165, respectively. Optimization of the culture parameters of the mixed culture SSF process, concentration of ammonium sulfate and corn steep liquor, CHC/peat moss ratio, inoculum size and ratios of the two strains, initial pH value, initial moisture content and incubation time, exhibited a significant increase ($2414.98{\pm}84.02$ U/g CHC) in xylanase production than before optimization.

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam

  • Thanh, D.T.;Tarn, L.T.T.;Hanh, N.T.;Tuyen, N.H.;Srinivasan, Bharathkumar;Lee, Sang-Yeob;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.

Formation of Succinic Acid by Klebsiella pneumoniae MCM B-325 Under Aerobic and Anaerobic Conditions

  • Thakker Chandresh;Bhosale Suresh;Ranade Dilip
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.870-879
    • /
    • 2006
  • The present study describes the formation of succinic acid by a nonvirulent, highly osmotolerant Klebsiella pneumoniae strain SAP (succinic acid producer), its profile of metabolites, and enzymes of the succinate production pathway. The strain produced succinate along with other metabolites such as lactate, acetate, and ethanol under aerobic as well as anaerobic growth conditions. The yield of succinate was higher in the presence of $MgCO_3$ under $N_2$ atmosphere as compared with that under $CO_2$ atmosphere. Analysis of intracellular metabolites showed the presence of a smaller PEP pool than that of pyruvate. Oxaloacetate, citrate, and $\alpha$-ketoglutarate pools were considerably larger than those of isocitrate and fumarate. In order to understand the synthesis of succinate, the enzymes involved in end-product formation were studied. Levels of phosphoenolpyruvate carboxykinase, fumarate reductase, pyruvate kinase, and acetate kinase were higher under anaerobic growth conditions. Based on the profiles of the metabolites and enzymes, it was concluded that the synthesis of succinate took place via oxaloacetate, malate, and fumarate in the strain under anaerobic growth conditions. The strain SAP showed potential for the bioconversion of fumarate to succinate under $N_2$ atmosphere in the presence of $MgCO_3$. At an initial fumarate concentration of 10 g/l, 7.1 g/l fumarate was converted to 7 g/l succinate with a molar conversion efficiency of 97.3%. The conversion efficiency and succinate yield were increased in the presence of glucose. Cells grown on fumarate contained an 18-fold higher fumarate reductase activity as compared with the activity obtained when grown on glucose.

A Study on the Microbial Measurement for Cosmetics Using Automated Methods (자동화 장비를 사용한 화장품중의 미생물 검출에 대한 연구)

  • Kim Eun-Young;Jang Seok-Tae;Choung Soung-Oun;Hong Tae-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.549-553
    • /
    • 2004
  • ATP bioluminescence system and impedance system were evaluated with the objective of reducing the time for microbial analysis of cosmetics formulations from 72 to 24 h. The meaningful correlation (at least $95\%$) was achieved when emulsion were artificially contaminated with low levels of different organisms, including Pseudomonas aeruinosa, Staphylococcus aureus, Escherichia coli and Ralstonia mannitolilytica. The standard agar plate method, ATP bioluminescence and impedance method were used for in this study. Successful evaluation and validation of automated systems has enabled the introduction of ATP bioluminescence and impedance method into routine use within the microbiology laboratory. This has provided a rapid assessment of product quality, resulting in faster throughput and resource maximization.

Irradiation of Pork Meat for Improvement of Hygienic and Keeping Quality (돈육의 위생화와 품질보존을 위한 감마선 조사)

  • 곽희진;계수경;강일준
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.8 no.4
    • /
    • pp.430-440
    • /
    • 1998
  • Meat is a perishable product since it offers favorable conditions for microbial contamination and multiplication. Besides, undercooked and raw meat has been linked to outbreaks of hemorrhagic diarrhea due to the presence of microbial pathogens. Therefore, this study was conducted to find out the effect of the use of gamma-irradiation in order to improve preservation and eliminate this microorganisms. The Initial level of microbial contamination in pork was 1.1$\times$10$^3$ CFU/g (aerobic bacteria), 5.3$\times$10$^3$CFU/g (psychrophile), 3.1$\times$10$^3$ CFU/g (coliforms) and 3.2$\times$10$^3$ CFU/g(Listeria), All kinds of contaminated microorgnisms were sterilized by gamma irradiation at 3 kGy. The proximate composition of pork was not significantly changed by irradiation dose and storage period. The pH was slightly increased during storage period and titratable acidity decreased. However, no significant changes in pH and acidity were observed by gamma irradiation. There was no difference in total amino acid content regardless of irradiation dose and storage period. Glutamic acid was detected at high levels throughout the storage period. The major mineral compositions of pork were potassium, phosphorus, sodium, magnesium. No significant difference in the components of minerals were observed by gamma irradiation.

  • PDF

Microbial Contamination of Seasoned and Dried Squid Dosidicus gigas during Processing (조미오징어(Dosidicus gigas)의 가공 공정 중 미생물 오염도 및 오염원에 관한 연구)

  • Choi, Kyoo-Duck;Park, Uk-Yeon;Shin, Il-Shik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.445-453
    • /
    • 2012
  • This study examined microbial contamination during seasoned and dried squid Dosidicus gigas processing, including the apparatus, machines, and employee's gloves at each step in processing at two companies. The numbers of bacteria floating in air in each processing area were also examined. The numbers of Staphylococcus aureus (3.6-6.0 log CFU/g) and Escherichia coli (1.3-1.4 log MPN/100 g) in domestic and imported daruma (a semi-processed product of seasoned and dried squid) at companies A and B exceeded the regulatory limits of the Food Sanitary Law of Korea (S. aureus, ${\leq}2.0$ log CFU/g; E. coli, negative). S. aureus in both daruma was reduced to below the detection limit or 3.6 log CFU/g after the roasting step, but increased again to 3.3 and 5.5 log CFU/g after the mechanical tearing step at companies A and B, respectively. E. coli showed similar tendencies at both companies. The surfaces of the apparatus, machines, and employee's gloves that contacted daruma were also contaminated with S. aureus (1.0-5.5 log CFU/$m^2$) and E. coli (negative-to 3.5 log MPN/$m^2$). The numbers of bacteria floating in air were high (1.7-5.1 log CFU/$m^3$) at both companies. These results suggest that sanitation standard operating procedures (SSOP) must be developed to control of microbial cintamination in seasoned and dried squid.

Effect of Heating on Polymerization of Pig Skin Collagen Using Microbial Transglutaminase

  • Erwanto, Yuny;Muguruma, Michio;Kawahara, Satoshi;Tsutsumi, Takahiko;Katayama, Kazunori;Yamauchi, Kiyoshi;Morishita, Toshiro;Morishita, Toshiro;Watanabe, Shohei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1204-1209
    • /
    • 2002
  • Polymerization of heated or unheated pig skin collagen using microbial transglutaminase (MTGase) was investigated. Pig skin collagen samples were heated or left unheated, then enzymatically polymerized with MTGase. SDS-PAGE was conducted to confirm the intermolecular polymer and the results showed similar bands between samples without MTGase and unheated samples with MTGase. The polymerized product of pig skin collagen was not formed in unheated samples, even when MTGase was added during incubation. Different results were obtained from samples heated at $80^{\circ}C$ and $100^{\circ}C$ for 2 min, whereas the SDS-PAGE pattern indicated that a polymer band was generated in both cases. The heat treatment successfully modified the native structure of collagen and also made collagen more reactable in the MTGase polymerization system. Scanning Electron Microscope (SEM) investigation of pig skin collagen showed a biopolymer structure through intermolecular collagen crosslinking, while there were no intermolecular crosslinks in samples not treated with MTGase. There were no significant differences in fibril diameter between treated samples and controls. These results suggest that heat treatment of native pig skin collagen enhanced the polymerization capability of MTGase.

The Quality Characteristics of Commercial Gwamegi by Product Types

  • Kang, Hui-Seung;Jeong, Seung-Weon;Ko, Jong-Cheul;Jang, Mi;Kim, Jong-Chan
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2011
  • This study was performed to investigate the physical, chemical and microbial characteristics of Gwamegi to provide basic data for the standardization of marine processed foods and for the improvement of the quality of commercial Gwamegi. The acid values of commercial Gwamegi were 5.8, 5.3 and 5.2 mg KOH/g for fillet type (F-type), "two divide" type (T-type) and whole type (W-type), respectively, and the peroxide values were 51.6, 51.5 and 53.2 meq/kg for each. There was a positive correlation between the acid value and the peroxide value (r=0.555) at confidence intervals (CI) of 99%. Trimethylamine (TMA) content of F-type, T-type and W-type products were 2.9, 2.6 and 3.6 mg%, respectively, while volatile basic nitrogen (VBN) contents were 22.4, 21.5 and 21.8 mg%. There was a strong positive correlation between TMA and VBN (r=0.961) at a CI of 99%. The histamine content was detected to be as much as 122 mg/kg, with about 36 % of the samples exceeding the CODEX criteria for histamine of 100 mg/kg. The total microbial count of 4 products exceeded 5 Log CFU/g and coliform group of 11 products exceeded the criteria of less than 1 Log CFU/g. Staphylococcus aureus in 27% of the samples exceeded the criteria of less than 2 Log CFU/g.

Valuation of Molecular Weight Distribution Charteristics of Soluble Microbial Products(SMP) Using the Batch Filtration Test (회분여과 방식을 통한 생물대사산물의 분자량 분포 특성 평가)

  • 정태영;차기철;이영무;한상국
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • The formation of soluble microbial products(SMP) and molecular weight distribution on loading rate were observed in batch-type culture medium, which phenol was fed as a substrate. The molecular weight destribution was obtained by using 30K, 100K dalton and $0.45{\mu}$ membrane filters. When the phenol concentrationas a substrate was 120, 230 and 440 mg/L , the specific substrate utilization rate(q) showed 0.639, 1.281 and 1.744 mgTOC/mgMLSS/day, respectively. The endogenous biomass decay rate constant($K_d$) at each substrate concentration was 0.00536, 0.0661 and 0.0749($day^1$), respectively. The $SMP_e$ product rate constant($k_{SMP}_ e$) showed 0.006, 0.0058 and 0.0057($day^1$), respectively. The initial influent substrate during the course of time degraded and produced $SMP_s$. The $SMP_s$ was converted to the $SMP_{nd}$ and endogenous phase converted to the $SMP_e$ ingredients. The molecula weight distribution on loading rate was converted to a higher MW during the course of time.

Dynamics of Bacterial Communities of Lamb Meat Packaged in Air and Vacuum Pouch during Chilled Storage

  • Wang, Taojun;Guo, Huiyuan;Zhang, Hao;Ren, Fazheng;Zhang, Ming;Ge, Shaoyang;Luo, Hailing;Zhao, Liang
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • In this study, the changes in microbial communities of lamb meat packaged in the air (plastic tray, PT) and in a vacuum pouch (VAC) were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) during the storage at $4^{\circ}C$. For the PT lamb, the total viable count (TVC) was $10^7CFU/g$ on Day 5, and the dominated bacteria were Pseudomonas fragi, P. fluorescens, and Acinetobacter spp. For the VAC lamb, the TVC was $10^7CFU/g$ on Day 9, and the dominated bacteria were lactic acid bacteria, including Carnobacterium divergens, C. maltaromaticum, and Lactococcus piscium. One strain of Pseudomonas spp. also appeared in VAC lamb. The relative abundance of Enterobacteriaceae in VAC lamb was higher than that PT lamb, indicating a more important role of Enterobacteriaceae in spoilage for VAC lamb than that of PT lamb. The microbial compositions changed faster in the lamb stored in a PT than that stored in a VAC, and microbial community compositions of the late storage period were largely different from those of the early storage period for both the conditions. The findings of this study may guide improve the lamb hygiene and prolong the shelf life of the lamb.