• Title/Summary/Keyword: microbial product

Search Result 437, Processing Time 0.028 seconds

Microbial Biotechnology Powered by Genomics, Proteomics, Metabolomics and Bioinformatics

  • Lee, Sang-Yup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.13-16
    • /
    • 2000
  • Microorganisms have been widely employed for the production of useful bioproducts including primary metabolites such as ethanol, succinic acid, acetone and butanol, secondary metabolites represented by antibiotics, proteins, polysaccharides, lipids and many others. Since these products can be obtained in small quantities under natural condition, mutation and selection processes have been employed for the improvement of strains. Recently, metabolic engineering strategies have been employed for more efficient production of these bioproducts. Metabolic engineering can be defined as purposeful modification of cellular metabolic pathways by introducing new pathways, deleting or modifying the existing pathways for the enhanced production of a desired product or modified/new product, degradation of xenobiotics, and utilization of inexpensive raw materials. Metabolic flux analysis and metabolic control analysis along with recombinant DNA techniques are three important components in designing optimized metabolic pathways, This powerful technology is being further improved by the genomics, proteomics, metabolomics and bioinformatics. Complete genome sequences are providing us with the possibility of addressing complex biological questions including metabolic control, regulation and flux. In silico analysis of microbial metabolic pathways is possible from the completed genome sequences. Transcriptome analysis by employing ONA chip allows us to examine the global pattern of gene expression at mRNA level. Two dimensional gel electrophoresis of cellular proteins can be used to examine the global proteome content, which provides us with the information on gene expression at protein level. Bioinformatics can help us to understand the results obtained with these new techniques, and further provides us with a wide range of information contained in the genome sequences. The strategies taken in our lab for the production of pharmaceutical proteins, polyhydroxyalkanoate (a family of completely biodegradable polymer), succinic acid and me chemicals by employing metabolic engineering powered by genomics, proteomics, metabolomics and bioinformatics will be presented.

  • PDF

Production of Microbial Insecticide Using Bacillus thuringiensis BT17 for the Control of Lepidopteran Larvae (Bacillus thuringiensis BT17 균주를 이용한 인시목 유충 방제용 미생물 살충제 생산)

  • Ahn, Kyung-Joon;Lee, Tae-Geun
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2010
  • Insecticidal crystalline toxin producing Bacillus thuringiensis BT17 strain was isolated and identified as B. thuringiensis serovar colmeri by 16S rRNA analysis. BT17 strain produced crystalline ${\delta}$-endotoxin against to Lepidopteran larvae effectively on the culture broth of soybean meal and skim milk, $30^{\circ}C$ and 36 h shaking culture of 280 rpm. The maximum colony forming unit achieved when the culture was continued for 24 h, but the number of crystals increased until 36 h in the 200 L fermentor. Liquid type of biological insecticide product was made, and after 3 months storage in $20^{\circ}C$ the number of crystals was increased up to twice than beginning. Biocontrol effect of BT17 insecticide product was better in Plutella xylostella than in Spodoptera exigua, and the toxicity to animals was negligible.

Antioxidant and Antimicrobial Efficacy of Sapota Powder in Pork Patties Stored under Different Packaging Conditions

  • Kumar, Pavan;Chatli, Manish Kumar;Mehta, Nitin;Malav, Om Prakash;Verma, Akhilesh Kumar;Kumar, Devendra;Rathour, Manjeet
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.593-605
    • /
    • 2018
  • The present study was undertaken to assess the efficacy of sapota powder (SP) as natural preservatives and its better utilization in food processing with the incorporation of various levels of SP (2, 4, and 6%) by replacing lean meat. Based on the sensory attributes, pork patties with 4% incorporation of SP was found optimum and selected for further storage studies with control under aerobic and modified atmosphere packaging at refrigeration temperature ($4{\pm}1^{\circ}C$) for 42 days for assessing its antioxidant and antimicrobial efficiency. During entire storage period, indicators of lipid oxidative parameters such as thiobarbituric acid reactive substances (TBARS), free fatty acids (FFA) and peroxide value (PV) followed an increasing trend for control as well as treated products; however, treated product showed a significantly (p<0.05) lower value than control. A significantly lower (p<0.05) microbial count in treated patties than control was noted during entire storage. The sensory attributes are better retained in treated product as compared to control and even on $42^{nd}$ day, overall acceptability of treated patties was found to fall in moderately acceptable category (5.95 in aerobic packets and 5.91 in modified atmosphere packets). Therefore SP has potential to enhance antioxidant and antimicrobial properties of pork patties during storage.

Effects of Medium Components on Microbial Production of L-Phenyralsnine (미생물발효에 의한 L-Phenylalanin생산에 미치는 배지성분의 영향)

  • 김동일
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.321-325
    • /
    • 1991
  • In thisstudy, effects of medium components on microbial production of L-phenylalanine by Corynebacterium glutamicum were investigated. The effect of carbon source on the production of L-phenylalanine was significant. Molasses enhanced the production of L-phenylalanine compared to sucrose, glucose, fructose, or their mixture. It was noticed that trace salts were required for the cell growth and product formation in the minimal medium, but excess amounts of trace salts had no effect on the production of L-phenylalanine. It was also found that optimum amounts of biotin and thiamine were required for the cell growth and the production of L -phenylalanine.

  • PDF

Occurrence of Tropical Race 4 of Fusarium oxysporum f. sp. cubense in Indonesia

  • Wibowo, A.;Subandiyah, S.;Sumardiyono, C.;Sulistyowati, L.;Taylor, P.;Fegan, M.
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.280-284
    • /
    • 2011
  • Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense is widespread in Indonesia. However, the distribution of tropical race 4 strains has not been well studied. Thirty nine isolates of F. oxysporum f. sp. cubense were collected from Java and 7 isolates were from Sumatera, Bangka, and Kalimantan. All isolates produced volatile odor when grown on steamed rice. These isolates were further tested for their vegetative compatibility with nitM testers of 20 reported vegetative compatibility groups representing strains that belong to race 1, 2, and 4. Three isolates formed heterokaryons with nitM testers belong to race 1, 11 isolates with race 4, and the rest did not form heterokaryons with all nitM testers used. F. oxysporum f. sp. cubense tropical race 4 specific primer pair was used to amplify a 1400 bp fragment of tropical race 4 DNA. Seven isolates (Bnt2, Mln1, Srg1, Bgl3, Bgl6, Lmp1, and Kjg1) produced the 1400 bp amplification product were therefore tropical race 4.

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

Characterization of Bacterial Structures in a Two-Stage Moving-Bed Biofilm Reactor (MBBR) During Nitrification of the Landfill Leachate

  • Ciesielski, Slawomir;Kulikowska, Dorota;Kaczowka, Ewelina;Kowal, Przemyslaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1140-1151
    • /
    • 2010
  • Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (>99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-$NH_4/m^2{\cdot}d$. Increasing the ammonium load to 2.03 g N-$NH_4/m^2{\cdot}d$or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-$NH_4/m^2{\cdot}d$), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Nonmetric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations suit particular AOB strains.

Molecular Cloning and the Nucleotide Sequence of a Bacillus sp. KK-l $\beta$-Xylosidase Gene

  • Chun, Yong-Chin;Jung, Kyung-Hwa;Lee, Jae-Chan;Park, Seung-Hwan;Chung, Ho-Kwon;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 1998
  • A gene coding for ${\beta}$-xylosidase from thermophilic xylanolytic Bacillus sp. KK-1 was cloned into Escherichia coli using plasmid pBR322. Recombinant plasmid DNAs were isloated from E. coli clones which were capable of hydrolyzing 4-methylumbelliferyl-${\beta}$-D xylopyranoside. Restriction analysis showed the DNAs to share a common insert DNA. Xylo-oligosaccharides, including xylotriose, xylotetraose, xylopentaose, and xylobiose were hydrolyzed to form xylose as an end product by cell-free extracts of the E. coli clones, confirming that the cloned gene from strain KK-1 is ${\beta}$-xylosidase gene. The ${\beta}$-xylosidase gene of strain KK-1 designated as xylB was completely sequenced. The xylB gene consisted of an open reading frame of 1,602 nucleotides encoding a polypeptide of 533 amino acid residues, and a TGA stop codon. The 3' flanking region contained one stem-loop structure which may be involved in transcriptional termination. The deduced amino acid sequence of the KK-1 ${\beta}$-xylosidase was highly homologous to the ${\beta}$-xylosidases of Bacillus subtilis and Bacillus pumilus, but it showed no similarity to a thermostable ${\beta}$-xylosidase from Bacillus stearothermophilus.

  • PDF

A Study on the Reaction Characteristics of Food Garbage by the Variations of Temperature (온도변화에 따른 음식쓰레기의 반응특성에 관한 연구)

  • Hu, Kwan;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.104-111
    • /
    • 1998
  • The utilization of food garbage as composting was investigated by using the batch reactor and by varying the initial temperature of the fermentation reactors. As the straw controlled under 50 to 55% of moisture content and mixed 5% of EM(Effective Micro-organisms) microbial agent. An agitator continuously operated 1 rpm, supplying the amount of air(2l/kg.min). Reactor temperature changed three type of 40$\circ$C, 50$\circ$C, 60$\circ$C. In the case of 50$\circ$C operated 72 hr after organic contents showed lowest 48%, and weight reduction rate of showed 77%. The reaction gas was showed 30 min after 19. 9% of the lowest level at 20.9% concentration of oxygen and CO$_2$ gas was produced 0.9% due to organic disintegration on initial react time. NH$_4$, H$_2$ and CH$_4$ gas concentration showed 589 ppm lhr after, 83 ppm and 0.3%, but 8hr after gas product was complete. As using the straw of bulking agent, the Reduction by disintegration should be more effectively than composting.

  • PDF

Estimating variation in the microbiological quality of seasoned soybean sprouts using probability model (확률 모형을 이용한 콩나물 무침의 미생물적 품질 변화 예측)

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.909-916
    • /
    • 2010
  • This study aims to establish storage stability conditions for cook-chilled korean ethenic foods. In order to achieve this aims, we establish a probability model of microbial counts of cook-chilled korean side dishes product-seasoned soybean sprouts. And seasoned soybean sprouts were stored during 1 to 5 days under constant temperature conditions at 0, 5, 10 and $15^{\circ}C$. Next we find confidence intervals for variation in the microbiological quality of seasoned soybean sprouts.