Browse > Article

Production of Microbial Insecticide Using Bacillus thuringiensis BT17 for the Control of Lepidopteran Larvae  

Ahn, Kyung-Joon (Department of Science Education, Seowon University)
Lee, Tae-Geun (Heuksalim Co.)
Publication Information
Korean Journal of Microbiology / v.46, no.4, 2010 , pp. 389-396 More about this Journal
Abstract
Insecticidal crystalline toxin producing Bacillus thuringiensis BT17 strain was isolated and identified as B. thuringiensis serovar colmeri by 16S rRNA analysis. BT17 strain produced crystalline ${\delta}$-endotoxin against to Lepidopteran larvae effectively on the culture broth of soybean meal and skim milk, $30^{\circ}C$ and 36 h shaking culture of 280 rpm. The maximum colony forming unit achieved when the culture was continued for 24 h, but the number of crystals increased until 36 h in the 200 L fermentor. Liquid type of biological insecticide product was made, and after 3 months storage in $20^{\circ}C$ the number of crystals was increased up to twice than beginning. Biocontrol effect of BT17 insecticide product was better in Plutella xylostella than in Spodoptera exigua, and the toxicity to animals was negligible.
Keywords
B. thuringiensis; ${\delta}$-endotoxin; biocontrol; Lepidoptera; microbial insecticide;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Vasantha, N. and E. Freese. 1979. The role of manganese in growth and sporulation of Bacillus subtilis. J. Gen. Microbiol. 112, 329-336.   DOI   ScienceOn
2 Wei, J.Z., K. Hale, L. Carta, E. Platzer, C. Wang, S.C. Fang, and R.V. Aroian. 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 100, 2760-2765.   DOI   ScienceOn
3 Perani, M., A.H. Bishop, and A. Vaid. 1998. Prevalence of $\beta$ – exotoxin in natural isolates of Bacillus thuringiensis. FEMS Microbiol. Lett. 160, 55-60.
4 Priest, F.G., D.A. Kaji, Y.B. Rosato, and V.P. Canhos. 1994. Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms. Microbiology 140, 15-22.
5 Pusztai, M., P. Fast, L. Gringorten, H. Kaplan, T. Lessard, and P.R. Carey. 1991. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem. J. 273, 43-47.   DOI
6 Scherrer, P., P. Luthy, and B. Trumpi. 1973. Production of $\delta$-endotoxin by Bacillus thuringiensis as a function of glucose concentrations. Appl. Microbiol. 25, 644-646.
7 Helgason, E., O.A. Okstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna, and A.B. Klosto. 2000. Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66, 2627-2630.   DOI   ScienceOn
8 Hofte, H. and H.R. Whiteley. 1989. Insecticidal cyrstal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255.
9 Miyagawa, E., R. Azuma, and T. Suto. 1979. Cellular fatty acid composition in Gram negative obligately anaerobic rods. J. Gen. Appl. Microbiol. 25, 41-51.   DOI
10 Obeta, J.A.N. and N. Okafor. 1984. Medium for the production of primary powder of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 47, 863-867.
11 Dulmage, H.T. 1981. Microbial control of pests and plant diseases, pp. 193-222. In H.D. Burgess (ed.). Academic Press, London, UK.
12 Goldberg, L.H. and J. Margalit. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipens. Mosquito News 37, 355-358.
13 Bulla, L.A., Jr., R.N. Costilow, and E.S. Sharpe. 1978. Biology of Bacillus popilliae. Adv. Appl. Microbiol. 22, 1-18.
14 Griego, V.M. and K.D. Spence. 1978. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl. Environ. Microbiol. 35, 906-910.
15 Guerchicoff, A., A. Delecluse, and C.P. Rubinstein. 2001. The Bacillus thuringiensis cyt genes for hemolytic endo toxin constitute a gene family. Appl. Environ. Microbiol. 67, 1090-1096.   DOI   ScienceOn
16 Bulla, L.A., Jr. 1975. Bacteria as insect pathogens. Ann. Rev. Microbiol. 29, 163-190.   DOI   ScienceOn
17 Crickmore, N., D.R. Zigler, J. Freitelson, E. Schnepf, J. van Rie, D. Lereclus, J. Baum, and D.H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Bio. Rev. 62, 807-813.
18 Agaisse, H. and D. Lereclus. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177, 6027-6032.   DOI
19 Dingman, D.W. and D.P. Stahly. 1983. Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl. Environ. Microbiol. 46, 860-869.
20 Du, C., P.A.W. Martin, and K.W. Nickerson. 1994. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl. Environ. Microbiol. 60, 3847-3853.
21 Schnepf, E., N. Crickmore, J. van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler, and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
22 Baum, J.A., T.B. Johnson, and B.C. Carlton. 1999. Bacillus thuringiensis: natural and recombinant products, pp. 189-210. In F.R. Hall and J.J. Menn (eds.), Biopesticides Use and Delivery. Humana Press, Totowa, NJ, USA.
23 Berliner, E. 1915. Uber die schlaffsucht der Mehlmottenraupe (Ephestia kuhnielluszell) und ihre Errenger Bacillus thuringiensis n. sp. Z. Angew. Entomol. 2, 29-56.
24 Widner, R.W. and H.R. Whiteley. 1989. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 171, 965-974.   DOI
25 Yezza, A., R.D. Tyagi, J.R. Valero, R.Y. Surampalli, and J. Smith. 2004. Scale-up of biopesticide production processes using wastewater sludge as a raw material. J. Ind. Microbiol. Biotechnol. 31, 545-552.   DOI   ScienceOn
26 Zhu, H., F. Qu, and L.H. Zhu. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21, 5279-5280.   DOI   ScienceOn