• Title/Summary/Keyword: microbial model

Search Result 377, Processing Time 0.028 seconds

Application of Bootstrap Method to Primary Model of Microbial Food Quality Change

  • Lee, Dong-Sun;Park, Jin-Pyo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1352-1356
    • /
    • 2008
  • Bootstrap method, a computer-intensive statistical technique to estimate the distribution of a statistic was applied to deal with uncertainty and variability of the experimental data in stochastic prediction modeling of microbial growth on a chill-stored food. Three different bootstrapping methods for the curve-fitting to the microbial count data were compared in determining the parameters of Baranyi and Roberts growth model: nonlinear regression to static version function with resampling residuals onto all the experimental microbial count data; static version regression onto mean counts at sampling times; dynamic version fitting of differential equations onto the bootstrapped mean counts. All the methods outputted almost same mean values of the parameters with difference in their distribution. Parameter search according to the dynamic form of differential equations resulted in the largest distribution of the model parameters but produced the confidence interval of the predicted microbial count close to those of nonlinear regression of static equation.

Model for Estimating CO2 Concentration in Package Headspace of Microbiologically Perishable Food

  • Lee, Dong-Sun;Kim, Hwan-Ki;An, Duck-Soon;Yam, Kit L.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.364-369
    • /
    • 2011
  • Levels of carbon dioxide gas, a metabolite of microbial growth, have been reported to parallel the onset of microbial spoilage and may be used as a convenient index for a packaged food's shelf life. This study aimed to establish a kinetic model of $CO_2$ production from perishable food for the potential use for shelf life control in the food supply chain. Aerobic bacterial count and package $CO_2$ concentration were measured during the storage of seasoned pork meat at four temperatures (0, 5, 10 and $15^{\circ}C$), and their interrelationship was investigated to establish a mathematical model. The microbial growth at constant temperature was described by using model of Baranyi and Roberts. $CO_2$ production from the stored food could be explained by taking care of its yield and maintenance factors linked to the microbial growth. By establishing the temperature dependence of the microbial growth and $CO_2$ yield factor, $CO_2$ partial pressure or concentration in package headspace could be estimated to a limited extent, which is helpful for controlling the shelf life under constant and dynamic temperature conditions. Application and efficacy of the model needs to be improved with further refinement in the model.

Modeling of Typical Microbial Cell Growth in Batch Culture

  • Jianqiang Lin;Lee, Sang-Mok;Lee, Ho-Joon;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.382-385
    • /
    • 2000
  • A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth of Trichoderma reesei and Lactobacillus delbrueckii.

  • PDF

Population changes and growth modeling of Salmonella enterica during alfalfa seed germination and early sprout development

  • Kim, Won-Il;Ryu, Sang Don;Kim, Se-Ri;Kim, Hyun-Ju;Lee, Seungdon;Kim, Jinwoo
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1865-1869
    • /
    • 2018
  • This study examined the effects of alfalfa seed germination on growth of Salmonella enterica. We investigated the population changes of S. enterica during early sprout development. We found that the population density of S. enterica, which was inoculated on alfalfa seeds was increased during sprout development under all experimental temperatures, whereas a significant reduction was observed when S. enterica was inoculated on fully germinated sprouts. To establish a model for predicting S. enterica growth during alfalfa sprout development, the kinetic growth data under isothermal conditions were collected and evaluated based on Baranyi model as a primary model for growth data. To elucidate the influence of temperature on S. enterica growth rates, three secondary models were compared and found that the Arrhenius-type model was more suitable than others. We believe that our model can be utilized to predict S. enterica behavior in alfalfa sprout and to conduct microbial risk assessments.

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.

Mathematical modeling of growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds (적콜라비 새싹채소 종자에서 분리한 Escherichia coli strain RC-4-D의 생장예측모델)

  • Choi, Soo Yeon;Ryu, Sang Don;Park, Byeong-Yong;Kim, Se-Ri;Kim, Hyun-Ju;Lee, Seungdon;Kim, Won-Il
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2017
  • This study was conducted to develop a predictive model for the growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds. We collected E. coli kinetic growth data during red kohlrabi seed sprouting under isothermal conditions (10, 15, 20, 25, and $30^{\circ}C$). Baranyi model was used as a primary order model for growth data. The maximum growth rate (${\mu}max$) and lag-phase duration (LPD) for each temperature (except for $10^{\circ}C$ LPD) were determined. Three kinds of secondary models (suboptimal Ratkowsky square-root, Huang model, and Arrhenius-type model) were compared to elucidate the influence of temperature on E. coli growth rate. The model performance measures for three secondary models showed that the suboptimal Huang square-root model was more suitable in the accuracy (1.223) and the suboptimal Ratkowsky square-root model was less in the bias (0.999), respectively. Among three secondary order model used in this study, the suboptimal Ratkowsky square-root model showed best fit for the secondary model for describing the effect of temperature. This model can be utilized to predict E. coli behavior in red kohlrabi sprout production and to conduct microbial risk assessments.

Predictive Modeling for Microbial Risk Assessment (MRA) from the Literature Experimental Data

  • Bahk, Gyung-Jin
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.137-142
    • /
    • 2009
  • One of the most important aspects of conducting this microbial risk assessment (MRA) is determining the model in microbial behaviors in food systems. However, to fully these modeling, large expenditures or newly laboratory experiments will be spent to do it. To overcome these problems, it has to be considered to develop the new strategies that can be used data in the published literatures. This study is to show whether or not the data set from the published experimental data has more value for modeling for MRA. To illustrate this suggestion, as example of data set, 4 published Salmonella survival in Cheddar cheese reports were used. Finally, using the GInaFiT tool, survival was modeled by nonlinear polynomial regression model describing the effect of temperature on Weibull model parameters. This model used data in the literatures is useful in describing behavior of Salmonella during different time and temperature conditions of cheese ripening.

Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process (MBR공정에서 내부 반송비에 따른 생물대사성분의 거동)

  • Lee, Won-Bae;Cha, Gi-Cheol;Jeong, Tae-Young;Kim, Dong-Jin;Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

Study on the Methodology of the Microbial Risk Assessment in Food (식품중 미생물 위해성평가 방법론 연구)

  • 이효민;최시내;윤은경;한지연;김창민;김길생
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.319-326
    • /
    • 1999
  • Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.FPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of tow steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and thresh-old approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data fur obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity: it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

  • PDF

Anti-Inflammatory Effect of Korean Soybean Sauce (Ganjang) on Mice with Induced Colitis

  • Hyeon-Ji Lim;In-Sun Park;Ji Won Seo;Gwangsu Ha;Hee-Jong Yang;Do-Youn Jeong;Seon-Young Kim;Chan-Hun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1501-1510
    • /
    • 2024
  • Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.