• Title/Summary/Keyword: microbial engineering

Search Result 1,539, Processing Time 0.033 seconds

Effect of Earthworm Pretense on Dyeing Properties of Protein Fibers

  • Kwon, Yoon-Jung;Kang, Sang-Mo;Kim, Soo-Jin;Noh, Sun-Young;Koh, Joon-Seok
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.8-14
    • /
    • 2006
  • An earthworm protease, Lumbricus rubellus, was used to improve the dyeing properties of protein fibers such as wool and silk. The optimal condition for the activity of the earthworm pretense was about $40^{\circ}C$ at pH 7. The wool and silk were treated with the protease extracted from an earthworm and the K/S values of the dyed wool and silk were measured using a spectrophotometer in order to compare the dye uptake. The pretense treatment enhanced the dyeing properties of protein fibers without severe changes in mechanical properties. The surface appearances of pretense-treated fibers were observed by microscopy analysis.

Effect of Pineapple Protease on the Characteristics of Protein Fibers

  • Koh Joon-Seok;Kang Sang-Mo;Kim Soo-Jin;Cha Min-Kyung;Kwon Yoon-Jung
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.180-185
    • /
    • 2006
  • A pineapple protease, bromelain, was used to improve the dyeing properties of protein fibers such as wool and silk. The optimal condition for the activity of the pineapple protease was about $60^{\circ}C$ at pH 7. The wool and silk were treated with the protease extracted from a pineapple and the K/S values of the dyed wool and silk were measured using a spectrophotometer in order to compare the dye uptake. The protease treatment enhanced the dyeing properties of protein fibers without severe changes in mechanical properties. The surface appearances of protease-treated fibers were observed by microscopy.

Biotransformation of Rosamicin Antibiotic into 10,11-Dihydrorosamicin with Enhanced In Vitro Antibacterial Activity Against MRSA

  • Nguyen, Lan Huong;Nguyen, Huu Hoang;Shrestha, Anil;Sohng, Jae Kyung;Yoon, Yeo Joon;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.44-47
    • /
    • 2014
  • A biotransformation approach using microbes as biocatalysts can be an efficient tool for the targeted modification of existing antibiotic chemical scaffolds to create previously uncharacterized therapeutic agents. By employing a recombinant Streptomyces venezuelae strain as a microbial catalyst, a reduced macrolide, 10,11-dihydrorosamicin, was created from rosamicin macrolide. Its chemical structure was spectroscopically elucidated, and the new rosamicin analog showed 2-4-fold higher antibacterial activity against two strains of methicillin-resistant Staphylococcus aureus compared with its parent rosamicin. This kind of biocatalytic approach is able to expand existing antibiotic entities and can also provide more diverse therapeutic resources.

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

Monitoring of Geothermal Systems Wells and Surrounding Area using Molecular Biological Methods for Microbial Species (분자생물학적 방법을 이용한 지열시스템 관정 및 주변지역 미생물종 모니터링)

  • Ahn, Chang-Min;Han, Ji-Sun;Kim, Chang-Gyun;Park, Yu-Chul;Mok, Jong-Koo;Jang, Bum-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.23-32
    • /
    • 2012
  • This study was conducted to monitor microbial species dynamics within the aquifer due to long term operation of geothermal heat pump system. The species were identified by molecular biological methods of 16S rDNA. Groundwater sample was collected from both open (S region) and closed geothermal recovery system (J region) along with the control. J measured and control as well as S measured found Ralstonia pickettii as dominant species at year 2010. In contrast, Rhodoferax ferrireducens was dominantly observed for the control of S. In 2011, Sediminibacterium sp. was universely identified as the dominant species regardless of the monitoring places and type of sample, i.e., measured or control. The difference in the dynamics between the measured and the control was not critically observed, but annual variation was more strikingly found. It reveals that possible environmental changes (e.g. ORP and DO) due to the operation of geothermal heat recovery system in aquifer could be more exceedingly preceded to differentiate annual variation of microbial species rather than positional differences.

Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System

  • Zhao, Hongyan;Yu, Hairu;Yuan, Xufeng;Piao, Renzhe;Li, Hulin;Wang, Xiaofen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.585-591
    • /
    • 2014
  • To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of $3.3{\times}10^8$ copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.

Shelf Life Extension of White Rice Cake and Wet Noodle by the Treatment with Chitosan (키토산 처리에 의한 흰떡과 생면의 저장성 연장)

  • Lee, Jang-Wook;Lee, Hyang-Hee;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.828-833
    • /
    • 2000
  • The effect of treatments with alcohol, chitosan, or with both alcohol and chitosan for extending the shelf-life of Korean white rice cake and wet noodle was investigated by measuring quality changes such as total microbial count, pH, and sensory qualities. Total microbial counts for control, alcohol-treated, and 1% lactic acid-treated white rice cakes exceeded the initial putrefactive criterion level of $1{\times}10^{6}\;CFU/g$ at 6, 27 and 20 days of storage, respectively. However, total microbial count of the white rice cake treated with chitosan was still less than the criterion level even at 76 days of storage. In the case of wet noodle, total microbial counts of control and alcohol-treated groups exceeded the criterion level within 7 days of storage, while that of chitosan-treated group was far less than the criterion level even at the end of storage of 82 days. Chitosan treatment extended the shelf-lives of both white rice cake and wet noodle appreciably.

  • PDF

Characteristics of Power Generation and Organic Matter Removal in Air-Cathode MFC with respect to Microbial Concentration (미생물 농도에 따르는 Air-Cathode MFC의 전력발생과 유기물질제거 특성)

  • Kim, Doyoung;Lim, Bongsu;Choi, Chansoo;Kim, Daehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.917-922
    • /
    • 2012
  • In order to improve applicability of a microbial fuel cell the laboratory-scaled study has been performed by adopting an air-cathode MFC system with high concentrated anaerobic slugies in this study. The concentrations of microbes are grouped into three types, Type A (TS 1.7%), Type B (TS 1.1%) and Type C (TS 0.51%). The open circuit voltage $(V_{oc})$ characteristics showed that the medium microbes concentration of 1.10% (Type B) kept a constant voltage of 1.0 V for 150 hours, which showed the longest time among three types (Type A and Type C). The discharge charge curves for a closed circuit with $500 \Omega$ also showed that Type B generated a stable discharge voltage of 0.8 V for a longer time as in the open circuit voltage case. This could be explained by the relatively large amount of the attached microbes. Under the $V_{oc}$condition the COD removal efficiency of Type B was found to be low for a long time, but those of Type A and C were found to be high for a short period of time. Therefore, the suspended microbes could decrease the coulombic efficiency. It was concluded that the high $V_{oc}$ was caused by low COD and the $V_{oc}$ became low after the COD removal. The COD reduction resulted in an unstable and low working voltage. From the polarization characteristics Type A was found to show the highest power density of $193\;mW/m^2$ with a fill factor of 0.127 due to the relatively high remaining COD even after the MFC reaction.

Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants (주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구)

  • Kim Jai-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.66-77
    • /
    • 2006
  • This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene amplification through PCR has been possible to figure out microbial population and identification. Active microbial community structures have been analyzed using a variety of fingerprinting techniques such as DGGE, SSCP, RISA, and microarray and fatty acid analyses such as PLFA and FAME, and the activity of a specific strain has been examined using FISH. Also, this review included the dominant microflora in groundwater contaminated with fuel components such as n-alkanes, BTEX, MTBE, and ethanol and chlorinated compounds such as TCE, PCE, PCB, CE, carbon tetrachloride, and chlorobenzene.