• Title/Summary/Keyword: microbial density

Search Result 328, Processing Time 0.029 seconds

Effects of anode surface area and methylene blue dye treatment on the power density of microbial fuel cell with sponge and carbon nano tube electrode (음극 전극 표면적과 메틸렌블루 염색이 스펀지 탄소나노 튜브 전극 미생물 연료전지의 전력수율에 미치는 영향)

  • Lee, Chae-Young;Park, Su-Hee;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Chung, Jae-Woo;Han, Sun-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.883-888
    • /
    • 2012
  • Anode electrode is one of the most important factors in microbial fuel cell (MFC). This study was conducted to investigate the effects of mediator as methylene blue (MB) and electrode surface area on the power density of MFC with sponge and carbon nano tube (CNT) electrode (SC). The SC electrode with MB (MC) showed the maximum power density increased from 74.0 $mW/m^2$ to 143.1 $mW/m^2$. The grid shaped sponge and CNT (GSC) electrode showed the maximum power density of 209.2 $mW/m^2$ due to the increase of surface area from 88.0 to 152.0 $cm^2$. The GSC electrode with MB (GMC) revealed the maximum power density of 384.9 $mW/m^2$ which was 5.2 times higher than that obtained from the MFC with SC. Therefore MB and increase of surface area led to enhance the performance of microbial fuel cell such as power density.

Printability Improvement of Hanji using Microbial Cellulose from Saprolegnia ferax (미생물 셀룰로오스를 이용한 한지의 인쇄적성 개선에 관한 연구)

  • Kang, Jin-Ha;Park, Seong-Cheol
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.23-29
    • /
    • 2008
  • This study was performed to improve the printability of Hanji using a microbial cellulose from Saprolegnia ferax through investigating the printability of Hanji sized with the mixture of the microbial cellulose and various kinds of sizing agents. Conclusions obtained from the results of this study were as follows. The proper concentration of a microbial cellulose in sizing a printable Hanji with it was 0.5%. In general, there was no remarkable effect but some effect on the opacity and ink density. Hanji was sized with the mixture(5:5) of microbial cellulose(0.5%) and AKD(1.0%). As a result, ink spread was remarkably improved by the girth reduction of ink spot. There was remarkable effect because the mixture(5:5) of a microbial cellulose(0.5%) and CMC(1.0%) improved not only the gloss but also the density and girth of ink spot. Mixing(7:3) with corn starch(3.0%) showed the smallest girth of ink spot among applied sizing agents. Mixing(7:3) with PVA(5.0%) also showed some effect in the density and girth of ink spot.

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

Evaluation of power density in microbial fuel cells using expanded graphite/carbon nanotube (CNT) composite cathode and CNT anode (팽창흑연·소나노튜브 복합 음극과 탄소나노튜브 양극으로 이루어진 미생물 연료전지의 전력수율 평가)

  • Han, Sun-Kee;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.503-509
    • /
    • 2013
  • Electrochemical redox capacity of a microbial fuel cell (MFC) electrode is an important factor in the power density. This study was conducted to investigate the redox capacity of surface modified anode and cathode electrodes by measuring their conductivities. An anode electrode was modified with nitric acid and a cathode electrode was modified with heat treatment. The anode electrode modified with 20 % of the nitric acid concentration showed the highest conductivity of $6.2{\mu}S/cm/g$ and the maximum power density of $306.0mW/m^2$ when used in a MFC. The cathode electrode modified at $472^{\circ}C$ for 18 min showed the highest conductivity of $5.2{\mu}S/cm/g$ and the maximum power density of $276.20mW/m^2$ when used in a MFC. On the other hand, an MFC using both the electrodes showed the highest maximum power density of $408.2mW/m^2$. Meanwhile, a control MFC without modified electrodes generated very small voltage (0.014 mV), so the power density could not be measured.

Development of a Garlic Peeling System Using High-Pressure Water Jets (III) - Introduction of a microbial control system - (습식 마늘박피 시스템 개발 (III) - 미생물 제어 시스템의 도입 -)

  • Kim J.;Bae Y. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.17-24
    • /
    • 2005
  • An efficient microbial control system was introduced into a garlic peeling system using pressurized water in order to improve the quality and the shelf-life of peeled garlic. High microbial density of the spoiled peeled garlic and the water used for peeling and washing indicated that an efficient microbial control system is necessary far the peeling system. Though Pseudomonas spp. and Penicillium spp. were closely related to the spoilage of peeled garlic, the spoilage of peeled garlic was thought to be caused mainly by nonspecific increase in microbial density. The shelf-life of the garlic peeled by pressurized water was longer than that of the garlic peeled by pressurized air, and the degree of damage had great effect on the shelf-life of peeled garlic. Ozonated water was effective in decreasing the microbial contamination and in increasing the shelf-life of peeled garlic. Based on the findings of the study, following improvements were made to the garlic peeling system using pressurized water; 1) the water circulation system was modified in order to completely separate the water for washing from the water for garlic peeling, 2) filtration and cooling equipments were introduced into the circulation system of the water for peeling, and 3) an ozone generator which could continuously supply ozonated water (dissolved ozone concentration of 0.4 ppm) was attached to the circulation system of the water for washing.

Population Dynamics of Effective Microorganisms in Microbial Pesticides and Environmental-friendly Organic Materials According to Storing Period and Temperature (저장기간 및 저장온도에 따른 미생물농약 및 친환경 유기농자재 유효미생물의 밀도변동)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Shim, Chang-Kee;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Lee, Seong-Don;Yoo, Jae-Hong
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • To work out quality control methods of environmental-friendly organic materials (EFOMs), the reason and basis for EFOM-selection and farmer's favorite formulation type of EFOMs, etc were investigated on farmers who had been practicing environmental-friendly agriculture. EFOMs used were soil amendments, control agents of plant diseases and insect pests, plant growth promotion formulations, in turns. In EFOMs application time, 22.7% of farmers sprayed EFOMs without delay after they were bought, in other hand, 77.3% of farmers used EFOMs which had been bought and stored for some period. Microbial density on seventeen environmental-friendly microbial formulates (EFMFs) including microbial pesticides, a microbial fertilizer, and environmental-friendly organic materials was investigated at different storing temperature and shelf life. When the microbial density of EFMFs was investigated without delay after they were bought, all used microbial pesticides and a microbial fertilizer was confirmed to be optimal for the certified density but two of environmental-friendly organic materials was confirmed not to be optimal. When microbial density of 17 EFMFs were investigated after storing them for six months at $4^{\circ}C$, only one of 9 microbial pesticides was confirmed not to be optimal, the other hand four of seven environmental-friendly organic materials not to be optimal, which each of their microbial density was less than the certified density. Population dynamics of microbial agents was much more influenced in fluctuated temperature (room temperature) than in static temperature condition ($5^{\circ}C$ and $25^{\circ}C$). Shelf life of microbial agents according to microbial formulation type were high in granule type, liquid wettable type and liquid type in turns.

Change of Soil Microbial Populations after Forest Fire (산불 발생 후 토양 미생물의 밀도 변화)

  • 박동진;육연수;김종진;이상화;김창진
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.78-81
    • /
    • 1999
  • The change of soil microbial populations was studied at the burnt areas of Mt. Jirisan in Hddong-Gun, Kyungsangnam-Do, where the fire had occurred on Oct. 21 in 1997. On the first day of the fireextinguished, the microbial density (CFUIg dry soil) was investigated at the surface, 5 cm, 10 cm, 20cm, and 30 cm depth of soils. Bacteria at the surface and 5cm depth of burnt sites were estimatedwith the low density level of $10^2$ CFW/g soil comparing to the $10^6$ CFUIg soil of the neighboring unburntsites. Actinomycetes of burnt sites were completely disappeared at the surface, and were estimatedwith the low density level of $10^3$ CFUig soil at thc 5 cm depth comparing to the 10"CFUigsoil at the depth of unburnt sites. Fungi wcrc not isolated at the surface and 5 cm depth at all.However, the rarest lire was not found to decrease the microbial populalions at the lower depths than10 cm. In addilion, the recovery or soil microbial populations following the fire was bimonthly investigatedat the surrace and 5 cm depth. Most of microbial densities at the burnt sites were greatlyincreased two months after the fire, being enough to he compared with the neighboring unburnt sites.However, actinomycetes only at the surface of burnt sites still were estimated the low density level of$10^4$ CFUig soil 4 months after the fire comparing to the $10^6$CFIg soil of unburnt sites.TEX>CFIg soil of unburnt sites.

  • PDF

Menadione-Modified Anodes for Power Enhancement in Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sunghyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3649-3653
    • /
    • 2013
  • As anode fabrication with different materials has been proven to be a successful alternative for enhancing power generation in the microbial fuel cells, a new approach to improved performance of MFCs with the use of menadione/carbon powder composite-modified carbon cloth anode has been explored in this study. Menadione has formal potential to easily accept electrons from the outer membrane cytochromes of electroactive bacteria that can directly interact with the solid surface. Surface bound menadione was able to maintain an electrical wiring with the trans-membrane electron transfer pathways to facilitate extracellular electron transfer to the electrode. In a single chamber air cathode MFC inoculated with aerobic sludge, maximum power density of $1250{\pm}35mWm^{-2}$ was achieved, which was 25% higher than that of an unmodified anode. The observed high power density and improved coulomb efficiency of 61% were ascribed to the efficient electron shuttling via the immobilized menadione.

Effects of Cover Plants on Soil Microbial Community in a Organic Pear Orchard

  • Oh, Young-Ju;Sohn, Soo-In;Song, Yang-Ik;Kang, Seok-Boem;Choi, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Due to recent interest of the consumers on safe farm products and the government's political support for eco-friendly agriculture, organic fruit production has been growing continuously. This research was conducted in order to study the effect of cover plants on soil microbial community on cover plants and establish an organic fruit cultivation method through choosing optimal cover plant. As a result of investigating soil microbial population density, the bacterial density in soil showed an increasing trend in June compared to April, and there was a decreasing trend in bacterial density of the soil in August compared to June. The density of actinomycetes in soil increased around 1.6 times in June compared to April when the soil was covered with hairy vetch. The increase of filamentous fungus in crimson clover group was 6.1 times higher in June compared to April and in hairy vetch group, the increase was 4.9 times higher in June compared to April. As a result of analyzing DNA extracted from the soil categorized by different types of cover plants using DGGE method, soil collected from April had higher number of bands detected from different locations according to different types of cover plants. Diversity of the bands from the soil collected from August showed higher range of reduction. As a result of analyzing soil microbial community by different period and the types of cover plants using Pyrosequencing method, microbes were detected in the order of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Firmicutes. Distribution rate of Firmicutes increased in the soil collected in August compared to June and this was shown in all types of cover plants by twice the amount.

Effects of Microbial Additives and Silo Density on Chemical Compositions, Fermentation Indices, and Aerobic Stability of Whole Crop Rice Silage (미생물 첨가와 사일로 밀도가 총체벼 사일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향)

  • Joo, Young Ho;Jeong, Seung Min;Seo, Myeong Ji;Lee, Seong Shin;Choi, Ki Choon;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR ("Youngwoo") was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.