• 제목/요약/키워드: microbial degradation

검색결과 425건 처리시간 0.028초

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

방향족화합물이 함유된 폐수의 생물학적 처리 (Microbial Degradation of Aromatic Compounds in Industrial Wastewater)

  • 박춘호;김용기;오평수
    • 한국미생물·생명공학회지
    • /
    • 제19권6호
    • /
    • pp.631-636
    • /
    • 1991
  • 방향족화합물을 생분해하는 미생물을 분리하여 생물학적 처리에 응용하기 위해 폐수 및 토양에서 150종의 균을 분리하였다. 그 중에서 COD 제거율과 방향족화합물의 이용능이 가장 우수한 HC107균을 선발하여 Pseudomonas sp.로 동정하였다. 활성슬러지 장치에서 Pseudomonas sp. HC107 배양액을 2ml/day씩 처리하면서 화학, 제약 및 도료공장의 폐수를 혼합하여 연속처리한 결과 처리수의 COD, BOD 및 phenol 제거율이 평균 92.5%, 95.53 및 93%.5로 나타났다.

  • PDF

무화과(Fig) 효소를 첨가한 유산균을 이용하여 알코올 대사활성 함유 치즈의 제조 (Production of cheese containing alcohol metabolism using Lactobacillus with fig enzyme)

  • 이성재;양영헌;전종민;이기원;조인재;이성민;류정열;신원성;김정수
    • 한국식품과학회지
    • /
    • 제49권2호
    • /
    • pp.141-145
    • /
    • 2017
  • 본 연구에서는 알코올 분해능이 높은 기능성 치즈를 제조하기 위하여 L. kitasatonis, L. amylophillus, L. mesenteroides sub. 및 무화과 효소를 이용하였다. 각각 균주의 에탄올, 내산 및 내담즙에 내성이 우수함을 확인하였고, ADH 및 ALDH 활성도를 측정한 결과 10%의 무화과 효소를 첨가하였을 때의 ADH 활성도는 각각 $688.39{\pm}51.63$, $1054.98{\pm}79.12$, $825.28{\pm}61.89{\mu}mol$로 나타났으며 ALDH는 각각 $751.91{\pm}54.14$, $1209.93{\pm}87.11$, $891.09{\pm}64.16{\mu}mol$로 무화과를 첨가하지 않았을 때보다 각각 증가하는 것으로 나타났다. 또한 L. amylophillus 균주를 이용하여 치즈를 제조한 뒤, 10%의 무화과 효소를 첨가하였을 때 ADH 및 ALDH 분해능이 무화과효소를 첨가하지 않았을 때 보다 각각 252, 246% 증가함을 확인하였다. 결론적으로 무화과 효소를 첨가하였을 때, L. amylophillus을 이용한 치즈의 제품이 높은 알코올 분해능을 가지는 것으로 확인되었고, 이를 통해 기능성 식품의 제조로써 무화과 효소의 적용 가능성을 확인하였다.

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation

  • Waghmare, Pankajkumar Ramdas;Waghmare, Pratima Pankajkumar;Gao, Liwei;Sun, Wan;Qin, Yuqi;Liu, Guodong;Qu, Yinbo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.740-746
    • /
    • 2021
  • Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.

가스상 TCE 처리를 위한 추출막 생물반응기의 수학적 모사

  • 김지석;김관수;장덕진
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.370-373
    • /
    • 2000
  • In this work, an extractive membrane bioreactor containing coulture broth of Burkholderia cepacia G4 PR1 constitutively expressing the TCE-degrading enzyme, tolune-ortho-monooxygenase(TOM), was used for the degradation of TCE. The membrane bioreactor operates by seperating the TCE-containing waste gas from the aerated biomedium, by which the air-stripping of TCE without degradation was overcome that could occur in conventional aerobic biological treatments of TCE-contaminated waste gases. This was achieved by a silicone rubber membrane which was coiled around a perspex draft tube. TCE from the gas phase diffuses across the silicone rubber membrane into microbial culture broth that was continuously fed from a separate aerobic CSTR. Therefore, TCE degradation occured without the TCE being directly exposed to the aerating gas stream. Of the TCE supplied to the membrane bioreactor, 72.6% was biodegraded during the operation of this system. To construct a mathematical model for this system, parameters describing microbial growth kinetics on TCE were determined using a CSTR bioreactor. Else parameters used for numerical simulation were determined from either indepedent experiments or values reported in the literature. The model was compared with the experimental data, and there was a good agreement between the predicted and the measured TCE concentrations in the system. To achieve a higher treatment efficiency, various operating conditions were simulated as well.

  • PDF

Identification of Two-Component Regulatory Genes Involved in o-Xylene Degradation by Rhodococcus sp. Strain DK17

  • Kim, Doc-Kyu;Chae Jong-Chan;Zylstra Gerben J.;Sohn Ho-Yong;Kwon, Gi-Seok;Kim, Eung-Bin
    • Journal of Microbiology
    • /
    • 제43권1호
    • /
    • pp.49-53
    • /
    • 2005
  • Putative genes for a two-component signal transduction system (akbS and akbT) were detected near the alkylbenzene-degrading operon of Rhodococcus sp. DK17. Sequence analysis indicates that AkbS possesses potential ATP-binding and histidine autophosphorylation sites in the N- and C-terminal regions, respectively, and that AkbT has a typical response regulator domain. Mutant analysis combined with RT-PCR experiments further shows that AkbS is required to induce the expression of o-xylene dioxygenase in DK17.

SVE 및 미생물제제를 이용한 유류 오염토양의 현장 복원

  • 박영준;염규진;김선미;이문현;박광진;이영신
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.103-106
    • /
    • 2003
  • This study was conducted to evaluate in-situ bioremediation ability of Bioil-D, microbial material for oil degradation, at a gas station that had been treated by SVE system. TPH concentrations and total contaminated soil volume were rapidly decreased after Bioil-D treatment. The performance of Bioil-D was also estimated based on the observation of microbial population at the soil samples and $CO_2$ concentration produced at the extraction wells. The field study showed a successful work of Bioil-D.

  • PDF

Influence of Mucor mucedo immobilized to corncob in remediation of pyrene contaminated agricultural soil

  • Hou, Wei;Zhang, Le;Li, Xiaojun;Gong, Zongqiang;Yang, Yongwei;Li, Zhi
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.149-154
    • /
    • 2015
  • In recent years, immobilization agents were introduced into organic contaminated soil remediation and more and more materials were screened and used as the immobilizing carrier. However, effect of the decomposition of the immobilizing carrier on the bioremediation was rarely concerned. Therefore, the decomposition experiment of immobilizing carrier -corncob was carried out in the lab with the efficient degradation fungi - Mucor mucedo (MU) existing, and polycyclic aromatic hydrocarbons (PAHs) residues E4/E6 of the dissolved organic matter and microbial diversity during the decomposition process were studied. The results showed that: a) during the decomposition, the degradation of pyrene (Pyr) was mainly in the first 28 d in which the content of extractable Pyr decreased rapidly and the highest decrease was in the treatment with only MU added. b) Anslysis of E4/E6 changes showed that rich microorganisms could promote aromatization and condensation of humus. c) From the diversity index analysis it can also be seen that there is no significant difference in effects of PAHs on the uniformity of microorganisms. These results will not only be useful to have a better understanding of the bioavailability of contaminants adsorbed to biodegradable carriers in PAHs contaminated soil remediation, but also be helpful to perfect the principle of immobilized microbial technique.